mmdeploy/tests/test_codebase/test_mmpose/test_mmpose_models.py

296 lines
11 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
import mmcv
import numpy as np
import pytest
import torch
from mmdeploy.codebase import import_codebase
from mmdeploy.utils import Backend, Codebase, Task
from mmdeploy.utils.test import WrapModel, check_backend, get_rewrite_outputs
try:
import_codebase(Codebase.MMPOSE)
except ImportError:
pytest.skip(
f'{Codebase.MMPOSE} is not installed.', allow_module_level=True)
def get_top_down_heatmap_simple_head_model():
from mmpose.models.heads import TopdownHeatmapSimpleHead
model = TopdownHeatmapSimpleHead(
2,
4,
num_deconv_filters=(16, 16, 16),
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=False))
model.requires_grad_(False)
return model
@pytest.mark.parametrize('backend_type',
[Backend.ONNXRUNTIME, Backend.TENSORRT])
def test_top_down_heatmap_simple_head_inference_model(backend_type: Backend):
check_backend(backend_type, True)
model = get_top_down_heatmap_simple_head_model()
model.cpu().eval()
if backend_type == Backend.TENSORRT:
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(
type=backend_type.value,
common_config=dict(max_workspace_size=1 << 30),
model_inputs=[
dict(
input_shapes=dict(
input=dict(
min_shape=[1, 3, 32, 48],
opt_shape=[1, 3, 32, 48],
max_shape=[1, 3, 32, 48])))
]),
onnx_config=dict(
input_shape=[32, 48], output_names=['output']),
codebase_config=dict(
type=Codebase.MMPOSE.value,
task=Task.POSE_DETECTION.value)))
else:
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(type=backend_type.value),
onnx_config=dict(input_shape=None, output_names=['output']),
codebase_config=dict(
type=Codebase.MMPOSE.value,
task=Task.POSE_DETECTION.value)))
img = torch.rand((1, 2, 32, 48))
model_outputs = model.inference_model(img)
wrapped_model = WrapModel(model, 'inference_model')
rewrite_inputs = {'x': img}
rewrite_outputs, is_backend_output = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)
if isinstance(rewrite_outputs, dict):
rewrite_outputs = rewrite_outputs['output']
for model_output, rewrite_output in zip(model_outputs, rewrite_outputs):
if isinstance(rewrite_output, torch.Tensor):
rewrite_output = rewrite_output.cpu().numpy()
assert np.allclose(
model_output, rewrite_output, rtol=1e-03, atol=1e-05)
def get_top_down_heatmap_msmu_head_model():
class DummyMSMUHead(torch.nn.Module):
def __init__(self, out_shape):
from mmpose.models.heads import TopdownHeatmapMSMUHead
super().__init__()
self.model = TopdownHeatmapMSMUHead(
out_shape,
unit_channels=2,
out_channels=17,
num_stages=1,
num_units=1,
loss_keypoint=dict(
type='JointsMSELoss', use_target_weight=False))
def inference_model(self, x):
assert isinstance(x, torch.Tensor)
return self.model.inference_model([[x]], flip_pairs=None)
model = DummyMSMUHead((32, 48))
model.requires_grad_(False)
return model
@pytest.mark.parametrize('backend_type',
[Backend.ONNXRUNTIME, Backend.TENSORRT])
def test_top_down_heatmap_msmu_head_inference_model(backend_type: Backend):
check_backend(backend_type, True)
model = get_top_down_heatmap_msmu_head_model()
model.cpu().eval()
if backend_type == Backend.TENSORRT:
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(
type=backend_type.value,
common_config=dict(max_workspace_size=1 << 30),
model_inputs=[
dict(
input_shapes=dict(
input=dict(
min_shape=[1, 3, 32, 48],
opt_shape=[1, 3, 32, 48],
max_shape=[1, 3, 32, 48])))
]),
onnx_config=dict(
input_shape=[32, 48], output_names=['output']),
codebase_config=dict(
type=Codebase.MMPOSE.value,
task=Task.POSE_DETECTION.value)))
else:
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(type=backend_type.value),
onnx_config=dict(input_shape=None, output_names=['output']),
codebase_config=dict(
type=Codebase.MMPOSE.value,
task=Task.POSE_DETECTION.value)))
img = torch.rand((1, 2, 32, 48))
model_outputs = model.inference_model(img)
wrapped_model = WrapModel(model, 'inference_model')
rewrite_inputs = {'x': img}
rewrite_outputs, is_backend_output = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)
if isinstance(rewrite_outputs, dict):
rewrite_outputs = rewrite_outputs['output']
for model_output, rewrite_output in zip(model_outputs, rewrite_outputs):
if isinstance(rewrite_output, torch.Tensor):
rewrite_output = rewrite_output.cpu().numpy()
assert np.allclose(
model_output, rewrite_output, rtol=1e-03, atol=1e-05)
def get_cross_resolution_weighting_model():
from mmpose.models.backbones.litehrnet import CrossResolutionWeighting
class DummyModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.model = CrossResolutionWeighting([16, 16], ratio=8)
def forward(self, x):
assert isinstance(x, torch.Tensor)
return self.model([x, x])
model = DummyModel()
model.requires_grad_(False)
return model
@pytest.mark.parametrize('backend_type', [Backend.ONNXRUNTIME, Backend.NCNN])
def test_cross_resolution_weighting_forward(backend_type: Backend):
check_backend(backend_type, True)
model = get_cross_resolution_weighting_model()
model.cpu().eval()
imgs = torch.rand(1, 16, 16, 16)
if backend_type == Backend.NCNN:
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(type=backend_type.value, use_vulkan=False),
onnx_config=dict(input_shape=None, output_names=['output']),
codebase_config=dict(
type=Codebase.MMPOSE.value,
task=Task.POSE_DETECTION.value)))
else:
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(type=backend_type.value),
onnx_config=dict(input_shape=None, output_names=['output']),
codebase_config=dict(
type=Codebase.MMPOSE.value,
task=Task.POSE_DETECTION.value)))
rewrite_inputs = {'x': imgs}
model_outputs = model.forward(imgs)
wrapped_model = WrapModel(model, 'forward')
rewrite_outputs, is_backend_output = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)
if isinstance(rewrite_outputs, dict):
rewrite_outputs = rewrite_outputs['output']
for model_output, rewrite_output in zip(model_outputs, rewrite_outputs):
model_output = model_output.cpu().numpy()
if isinstance(rewrite_output, torch.Tensor):
rewrite_output = rewrite_output.detach().cpu().numpy()
assert np.allclose(
model_output, rewrite_output, rtol=1e-03, atol=1e-05)
def get_top_down_model():
from mmpose.models.detectors.top_down import TopDown
model_cfg = dict(
type='TopDown',
pretrained=None,
backbone=dict(type='ResNet', depth=18),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=512,
out_channels=17,
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=False,
post_process='default',
shift_heatmap=False,
modulate_kernel=11))
model = TopDown(model_cfg['backbone'], None, model_cfg['keypoint_head'],
model_cfg['train_cfg'], model_cfg['test_cfg'],
model_cfg['pretrained'])
model.requires_grad_(False)
return model
@pytest.mark.parametrize('backend_type',
[Backend.ONNXRUNTIME, Backend.TENSORRT])
def test_top_down_forward(backend_type: Backend):
check_backend(backend_type, True)
model = get_top_down_model()
model.cpu().eval()
if backend_type == Backend.TENSORRT:
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(
type=backend_type.value,
common_config=dict(max_workspace_size=1 << 30),
model_inputs=[
dict(
input_shapes=dict(
input=dict(
min_shape=[1, 3, 32, 32],
opt_shape=[1, 3, 32, 32],
max_shape=[1, 3, 32, 32])))
]),
onnx_config=dict(
input_shape=[32, 32], output_names=['output']),
codebase_config=dict(
type=Codebase.MMPOSE.value,
task=Task.POSE_DETECTION.value)))
else:
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(type=backend_type.value),
onnx_config=dict(input_shape=None, output_names=['output']),
codebase_config=dict(
type=Codebase.MMPOSE.value,
task=Task.POSE_DETECTION.value)))
img = torch.rand((1, 3, 32, 32))
img_metas = {
'image_file':
'tests/test_codebase/test_mmpose' + '/data/imgs/dataset/blank.jpg',
'center': torch.tensor([0.5, 0.5]),
'scale': 1.,
'location': torch.tensor([0.5, 0.5]),
'bbox_score': 0.5
}
model_outputs = model.forward(
img, img_metas=[img_metas], return_loss=False, return_heatmap=True)
model_outputs = model_outputs['output_heatmap']
wrapped_model = WrapModel(model, 'forward', return_loss=False)
rewrite_inputs = {'img': img}
rewrite_outputs, is_backend_output = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)
if isinstance(rewrite_outputs, dict):
rewrite_outputs = rewrite_outputs['output']
for model_output, rewrite_output in zip(model_outputs, rewrite_outputs):
if isinstance(rewrite_output, torch.Tensor):
rewrite_output = rewrite_output.cpu().numpy()
assert np.allclose(
model_output, rewrite_output, rtol=1e-03, atol=1e-05)