2022-02-16 11:03:12 +08:00
|
|
|
# Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
import mmcv
|
|
|
|
import numpy as np
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from mmdeploy.codebase import import_codebase
|
|
|
|
from mmdeploy.utils import Backend, Codebase, Task
|
|
|
|
from mmdeploy.utils.test import WrapModel, check_backend, get_rewrite_outputs
|
|
|
|
|
|
|
|
try:
|
|
|
|
import_codebase(Codebase.MMPOSE)
|
|
|
|
except ImportError:
|
|
|
|
pytest.skip(
|
|
|
|
f'{Codebase.MMPOSE} is not installed.', allow_module_level=True)
|
|
|
|
|
|
|
|
|
|
|
|
def get_top_down_heatmap_simple_head_model():
|
|
|
|
from mmpose.models.heads import TopdownHeatmapSimpleHead
|
|
|
|
model = TopdownHeatmapSimpleHead(
|
|
|
|
2,
|
|
|
|
4,
|
|
|
|
num_deconv_filters=(16, 16, 16),
|
|
|
|
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=False))
|
|
|
|
model.requires_grad_(False)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('backend_type',
|
|
|
|
[Backend.ONNXRUNTIME, Backend.TENSORRT])
|
|
|
|
def test_top_down_heatmap_simple_head_inference_model(backend_type: Backend):
|
|
|
|
check_backend(backend_type, True)
|
|
|
|
model = get_top_down_heatmap_simple_head_model()
|
|
|
|
model.cpu().eval()
|
|
|
|
if backend_type == Backend.TENSORRT:
|
|
|
|
deploy_cfg = mmcv.Config(
|
|
|
|
dict(
|
|
|
|
backend_config=dict(
|
|
|
|
type=backend_type.value,
|
|
|
|
common_config=dict(max_workspace_size=1 << 30),
|
|
|
|
model_inputs=[
|
|
|
|
dict(
|
|
|
|
input_shapes=dict(
|
|
|
|
input=dict(
|
|
|
|
min_shape=[1, 3, 32, 48],
|
|
|
|
opt_shape=[1, 3, 32, 48],
|
|
|
|
max_shape=[1, 3, 32, 48])))
|
|
|
|
]),
|
|
|
|
onnx_config=dict(
|
|
|
|
input_shape=[32, 48], output_names=['output']),
|
|
|
|
codebase_config=dict(
|
|
|
|
type=Codebase.MMPOSE.value,
|
|
|
|
task=Task.POSE_DETECTION.value)))
|
|
|
|
else:
|
|
|
|
deploy_cfg = mmcv.Config(
|
|
|
|
dict(
|
|
|
|
backend_config=dict(type=backend_type.value),
|
|
|
|
onnx_config=dict(input_shape=None, output_names=['output']),
|
|
|
|
codebase_config=dict(
|
|
|
|
type=Codebase.MMPOSE.value,
|
|
|
|
task=Task.POSE_DETECTION.value)))
|
|
|
|
img = torch.rand((1, 2, 32, 48))
|
|
|
|
model_outputs = model.inference_model(img)
|
|
|
|
wrapped_model = WrapModel(model, 'inference_model')
|
|
|
|
rewrite_inputs = {'x': img}
|
|
|
|
rewrite_outputs, is_backend_output = get_rewrite_outputs(
|
|
|
|
wrapped_model=wrapped_model,
|
|
|
|
model_inputs=rewrite_inputs,
|
|
|
|
deploy_cfg=deploy_cfg)
|
|
|
|
if isinstance(rewrite_outputs, dict):
|
|
|
|
rewrite_outputs = rewrite_outputs['output']
|
|
|
|
for model_output, rewrite_output in zip(model_outputs, rewrite_outputs):
|
|
|
|
if isinstance(rewrite_output, torch.Tensor):
|
|
|
|
rewrite_output = rewrite_output.cpu().numpy()
|
|
|
|
assert np.allclose(
|
|
|
|
model_output, rewrite_output, rtol=1e-03, atol=1e-05)
|
|
|
|
|
|
|
|
|
|
|
|
def get_top_down_heatmap_msmu_head_model():
|
|
|
|
|
|
|
|
class DummyMSMUHead(torch.nn.Module):
|
|
|
|
|
|
|
|
def __init__(self, out_shape):
|
|
|
|
from mmpose.models.heads import TopdownHeatmapMSMUHead
|
|
|
|
super().__init__()
|
|
|
|
self.model = TopdownHeatmapMSMUHead(
|
|
|
|
out_shape,
|
|
|
|
unit_channels=2,
|
|
|
|
out_channels=17,
|
|
|
|
num_stages=1,
|
|
|
|
num_units=1,
|
|
|
|
loss_keypoint=dict(
|
|
|
|
type='JointsMSELoss', use_target_weight=False))
|
|
|
|
|
|
|
|
def inference_model(self, x):
|
|
|
|
assert isinstance(x, torch.Tensor)
|
|
|
|
return self.model.inference_model([[x]], flip_pairs=None)
|
|
|
|
|
|
|
|
model = DummyMSMUHead((32, 48))
|
|
|
|
|
|
|
|
model.requires_grad_(False)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('backend_type',
|
|
|
|
[Backend.ONNXRUNTIME, Backend.TENSORRT])
|
|
|
|
def test_top_down_heatmap_msmu_head_inference_model(backend_type: Backend):
|
|
|
|
check_backend(backend_type, True)
|
|
|
|
model = get_top_down_heatmap_msmu_head_model()
|
|
|
|
model.cpu().eval()
|
|
|
|
if backend_type == Backend.TENSORRT:
|
|
|
|
deploy_cfg = mmcv.Config(
|
|
|
|
dict(
|
|
|
|
backend_config=dict(
|
|
|
|
type=backend_type.value,
|
|
|
|
common_config=dict(max_workspace_size=1 << 30),
|
|
|
|
model_inputs=[
|
|
|
|
dict(
|
|
|
|
input_shapes=dict(
|
|
|
|
input=dict(
|
|
|
|
min_shape=[1, 3, 32, 48],
|
|
|
|
opt_shape=[1, 3, 32, 48],
|
|
|
|
max_shape=[1, 3, 32, 48])))
|
|
|
|
]),
|
|
|
|
onnx_config=dict(
|
|
|
|
input_shape=[32, 48], output_names=['output']),
|
|
|
|
codebase_config=dict(
|
|
|
|
type=Codebase.MMPOSE.value,
|
|
|
|
task=Task.POSE_DETECTION.value)))
|
|
|
|
else:
|
|
|
|
deploy_cfg = mmcv.Config(
|
|
|
|
dict(
|
|
|
|
backend_config=dict(type=backend_type.value),
|
|
|
|
onnx_config=dict(input_shape=None, output_names=['output']),
|
|
|
|
codebase_config=dict(
|
|
|
|
type=Codebase.MMPOSE.value,
|
|
|
|
task=Task.POSE_DETECTION.value)))
|
|
|
|
img = torch.rand((1, 2, 32, 48))
|
|
|
|
model_outputs = model.inference_model(img)
|
|
|
|
wrapped_model = WrapModel(model, 'inference_model')
|
|
|
|
rewrite_inputs = {'x': img}
|
|
|
|
rewrite_outputs, is_backend_output = get_rewrite_outputs(
|
|
|
|
wrapped_model=wrapped_model,
|
|
|
|
model_inputs=rewrite_inputs,
|
|
|
|
deploy_cfg=deploy_cfg)
|
|
|
|
if isinstance(rewrite_outputs, dict):
|
|
|
|
rewrite_outputs = rewrite_outputs['output']
|
|
|
|
for model_output, rewrite_output in zip(model_outputs, rewrite_outputs):
|
|
|
|
if isinstance(rewrite_output, torch.Tensor):
|
|
|
|
rewrite_output = rewrite_output.cpu().numpy()
|
|
|
|
assert np.allclose(
|
|
|
|
model_output, rewrite_output, rtol=1e-03, atol=1e-05)
|
|
|
|
|
|
|
|
|
|
|
|
def get_cross_resolution_weighting_model():
|
|
|
|
from mmpose.models.backbones.litehrnet import CrossResolutionWeighting
|
|
|
|
|
|
|
|
class DummyModel(torch.nn.Module):
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
self.model = CrossResolutionWeighting([16, 16], ratio=8)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
assert isinstance(x, torch.Tensor)
|
|
|
|
return self.model([x, x])
|
|
|
|
|
|
|
|
model = DummyModel()
|
|
|
|
model.requires_grad_(False)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
2022-04-29 16:46:19 +08:00
|
|
|
@pytest.mark.parametrize('backend_type', [Backend.ONNXRUNTIME, Backend.NCNN])
|
2022-02-16 11:03:12 +08:00
|
|
|
def test_cross_resolution_weighting_forward(backend_type: Backend):
|
|
|
|
check_backend(backend_type, True)
|
|
|
|
model = get_cross_resolution_weighting_model()
|
|
|
|
model.cpu().eval()
|
|
|
|
imgs = torch.rand(1, 16, 16, 16)
|
|
|
|
|
2022-04-29 16:46:19 +08:00
|
|
|
if backend_type == Backend.NCNN:
|
|
|
|
deploy_cfg = mmcv.Config(
|
|
|
|
dict(
|
|
|
|
backend_config=dict(type=backend_type.value, use_vulkan=False),
|
|
|
|
onnx_config=dict(input_shape=None, output_names=['output']),
|
|
|
|
codebase_config=dict(
|
|
|
|
type=Codebase.MMPOSE.value,
|
|
|
|
task=Task.POSE_DETECTION.value)))
|
|
|
|
else:
|
|
|
|
deploy_cfg = mmcv.Config(
|
|
|
|
dict(
|
|
|
|
backend_config=dict(type=backend_type.value),
|
|
|
|
onnx_config=dict(input_shape=None, output_names=['output']),
|
|
|
|
codebase_config=dict(
|
|
|
|
type=Codebase.MMPOSE.value,
|
|
|
|
task=Task.POSE_DETECTION.value)))
|
2022-02-16 11:03:12 +08:00
|
|
|
rewrite_inputs = {'x': imgs}
|
|
|
|
model_outputs = model.forward(imgs)
|
|
|
|
wrapped_model = WrapModel(model, 'forward')
|
|
|
|
rewrite_outputs, is_backend_output = get_rewrite_outputs(
|
|
|
|
wrapped_model=wrapped_model,
|
|
|
|
model_inputs=rewrite_inputs,
|
|
|
|
deploy_cfg=deploy_cfg)
|
|
|
|
if isinstance(rewrite_outputs, dict):
|
|
|
|
rewrite_outputs = rewrite_outputs['output']
|
|
|
|
for model_output, rewrite_output in zip(model_outputs, rewrite_outputs):
|
|
|
|
model_output = model_output.cpu().numpy()
|
|
|
|
if isinstance(rewrite_output, torch.Tensor):
|
|
|
|
rewrite_output = rewrite_output.detach().cpu().numpy()
|
|
|
|
assert np.allclose(
|
|
|
|
model_output, rewrite_output, rtol=1e-03, atol=1e-05)
|
|
|
|
|
|
|
|
|
|
|
|
def get_top_down_model():
|
|
|
|
from mmpose.models.detectors.top_down import TopDown
|
|
|
|
model_cfg = dict(
|
|
|
|
type='TopDown',
|
|
|
|
pretrained=None,
|
|
|
|
backbone=dict(type='ResNet', depth=18),
|
|
|
|
keypoint_head=dict(
|
|
|
|
type='TopdownHeatmapSimpleHead',
|
|
|
|
in_channels=512,
|
|
|
|
out_channels=17,
|
|
|
|
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
|
|
|
|
train_cfg=dict(),
|
|
|
|
test_cfg=dict(
|
|
|
|
flip_test=False,
|
|
|
|
post_process='default',
|
|
|
|
shift_heatmap=False,
|
|
|
|
modulate_kernel=11))
|
|
|
|
model = TopDown(model_cfg['backbone'], None, model_cfg['keypoint_head'],
|
|
|
|
model_cfg['train_cfg'], model_cfg['test_cfg'],
|
|
|
|
model_cfg['pretrained'])
|
|
|
|
|
|
|
|
model.requires_grad_(False)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('backend_type',
|
|
|
|
[Backend.ONNXRUNTIME, Backend.TENSORRT])
|
|
|
|
def test_top_down_forward(backend_type: Backend):
|
|
|
|
check_backend(backend_type, True)
|
|
|
|
model = get_top_down_model()
|
|
|
|
model.cpu().eval()
|
|
|
|
if backend_type == Backend.TENSORRT:
|
|
|
|
deploy_cfg = mmcv.Config(
|
|
|
|
dict(
|
|
|
|
backend_config=dict(
|
|
|
|
type=backend_type.value,
|
|
|
|
common_config=dict(max_workspace_size=1 << 30),
|
|
|
|
model_inputs=[
|
|
|
|
dict(
|
|
|
|
input_shapes=dict(
|
|
|
|
input=dict(
|
|
|
|
min_shape=[1, 3, 32, 32],
|
|
|
|
opt_shape=[1, 3, 32, 32],
|
|
|
|
max_shape=[1, 3, 32, 32])))
|
|
|
|
]),
|
|
|
|
onnx_config=dict(
|
|
|
|
input_shape=[32, 32], output_names=['output']),
|
|
|
|
codebase_config=dict(
|
|
|
|
type=Codebase.MMPOSE.value,
|
|
|
|
task=Task.POSE_DETECTION.value)))
|
|
|
|
else:
|
|
|
|
deploy_cfg = mmcv.Config(
|
|
|
|
dict(
|
|
|
|
backend_config=dict(type=backend_type.value),
|
|
|
|
onnx_config=dict(input_shape=None, output_names=['output']),
|
|
|
|
codebase_config=dict(
|
|
|
|
type=Codebase.MMPOSE.value,
|
|
|
|
task=Task.POSE_DETECTION.value)))
|
|
|
|
img = torch.rand((1, 3, 32, 32))
|
|
|
|
img_metas = {
|
|
|
|
'image_file':
|
|
|
|
'tests/test_codebase/test_mmpose' + '/data/imgs/dataset/blank.jpg',
|
|
|
|
'center': torch.tensor([0.5, 0.5]),
|
|
|
|
'scale': 1.,
|
|
|
|
'location': torch.tensor([0.5, 0.5]),
|
|
|
|
'bbox_score': 0.5
|
|
|
|
}
|
|
|
|
model_outputs = model.forward(
|
|
|
|
img, img_metas=[img_metas], return_loss=False, return_heatmap=True)
|
|
|
|
model_outputs = model_outputs['output_heatmap']
|
|
|
|
wrapped_model = WrapModel(model, 'forward', return_loss=False)
|
|
|
|
rewrite_inputs = {'img': img}
|
|
|
|
rewrite_outputs, is_backend_output = get_rewrite_outputs(
|
|
|
|
wrapped_model=wrapped_model,
|
|
|
|
model_inputs=rewrite_inputs,
|
|
|
|
deploy_cfg=deploy_cfg)
|
|
|
|
if isinstance(rewrite_outputs, dict):
|
|
|
|
rewrite_outputs = rewrite_outputs['output']
|
|
|
|
for model_output, rewrite_output in zip(model_outputs, rewrite_outputs):
|
|
|
|
if isinstance(rewrite_output, torch.Tensor):
|
|
|
|
rewrite_output = rewrite_output.cpu().numpy()
|
|
|
|
assert np.allclose(
|
|
|
|
model_output, rewrite_output, rtol=1e-03, atol=1e-05)
|