229 lines
11 KiB
Markdown
229 lines
11 KiB
Markdown
|
# 如何进行回归测试
|
|||
|
|
|||
|
<!-- -->
|
|||
|
这篇教程介绍了如何进行回归测试。部署配置文件由`每个codebase的回归配置文件`,`推理框架配置信息`组成。
|
|||
|
|
|||
|
<!-- TOC -->
|
|||
|
|
|||
|
- [如何进行回归测试](#如何进行回归测试)
|
|||
|
- [1. 用法](#1-用法)
|
|||
|
- [参数解析](#参数解析)
|
|||
|
- [示例](#示例)
|
|||
|
- [2. 回归测试配置文件](#2-回归测试配置文件)
|
|||
|
- [示例及参数解析](#示例及参数解析)
|
|||
|
- [3. 生成的报告](#3-生成的报告)
|
|||
|
- [模板](#模板)
|
|||
|
- [示例](#示例)
|
|||
|
- [4. 支持的后端](#4-支持的后端)
|
|||
|
- [5. 支持的Codebase及其Metric](#5-支持的Codebase及其Metric)
|
|||
|
- [6. 注意事项](#7-注意事项)
|
|||
|
- [7. 常见问题](#8-常见问题)
|
|||
|
|
|||
|
<!-- TOC -->
|
|||
|
|
|||
|
## 1. 用法
|
|||
|
|
|||
|
```shell
|
|||
|
python ./tools/regression_test.py \
|
|||
|
--deploy-yml "${DEPLOY_YML_PATH}" \
|
|||
|
--backends "${BACKEND}" \
|
|||
|
--work-dir "${WORK_DIR}" \
|
|||
|
--device "${DEVICE}" \
|
|||
|
--log-level INFO \
|
|||
|
[--performance]
|
|||
|
```
|
|||
|
|
|||
|
### 参数解析
|
|||
|
|
|||
|
- `--deploy-yml` : 需要测试的 codebase,eg.`configs/mmdet/mmdet_regression_test.yaml`,如果设置为 `all` 即全部测试。
|
|||
|
- `--backends` : 筛选测试的后端, 默认 `all`: 测全部`backend`, 也可传入若干个后端,例如 `onnxruntime tesnsorrt`。
|
|||
|
- `--work-dir` : 模型转换、报告生成的路径。
|
|||
|
- `--device` : 使用的设备,默认 `cuda`。
|
|||
|
- `--log-level` : 设置日记的等级,选项包括`'CRITICAL', 'FATAL', 'ERROR', 'WARN', 'WARNING', 'INFO', 'DEBUG', 'NOTSET'`。默认是`INFO`。
|
|||
|
- `--performance` : 是否测试精度,加上则测试转换+精度,不加上则只测试转换
|
|||
|
|
|||
|
### 注意事项
|
|||
|
对于 Windows 用户:
|
|||
|
1. 要在 shell 命令中使用 `&&` 连接符,需要下载并使用 `PowerShell 7 Preview 5+`。
|
|||
|
2. 如果您使用 conda env,可能需要在 regression_test.py 中将 `python3` 更改为 `python`,因为 `%USERPROFILE%\AppData\Local\Microsoft\WindowsApps` 目录中有 `python3.exe`。
|
|||
|
|
|||
|
## 例子
|
|||
|
|
|||
|
1. 测试 mmdet 和 mmpose 的所有 backend 的 转换+精度
|
|||
|
|
|||
|
```shell
|
|||
|
python ./tools/regression_test.py \
|
|||
|
--deploy-yml ./configs/mmdet/mmdet_regression_test.yaml ./configs/mmpose/mmpose_regression_test.yaml \
|
|||
|
--backends all \
|
|||
|
--work-dir "../mmdeploy_regression_working_dir" \
|
|||
|
--device "cuda" \
|
|||
|
--log-level INFO \
|
|||
|
--performance
|
|||
|
```
|
|||
|
|
|||
|
2. 测试 mmdet 和 mmpose 的某几个 backend 的 转换+精度
|
|||
|
|
|||
|
```shell
|
|||
|
python ./tools/regression_test.py \
|
|||
|
--deploy-yml ./configs/mmdet/mmdet_regression_test.yaml ./configs/mmdet/mmpose.yaml \
|
|||
|
--backends onnxruntime tesnsorrt \
|
|||
|
--work-dir "../mmdeploy_regression_working_dir" \
|
|||
|
--device "cuda" \
|
|||
|
--log-level INFO \
|
|||
|
--performance
|
|||
|
```
|
|||
|
|
|||
|
3. 测试 mmdet 和 mmpose 的某几个 backend,只需测试转换
|
|||
|
|
|||
|
```shell
|
|||
|
python ./tools/regression_test.py \
|
|||
|
--deploy-yml ./configs/mmdet/mmdet_regression_test.yaml ./configs/mmdet/mmpose.yaml \
|
|||
|
--backends onnxruntime tesnsorrt \
|
|||
|
--work-dir "../mmdeploy_regression_working_dir" \
|
|||
|
--device "cuda" \
|
|||
|
--log-level INFO
|
|||
|
```
|
|||
|
|
|||
|
## 2. 回归测试配置文件
|
|||
|
|
|||
|
### 示例及参数解析
|
|||
|
|
|||
|
```yaml
|
|||
|
globals:
|
|||
|
codebase_name: mmocr # 回归测试的 codebase 名称
|
|||
|
codebase_dir: ../mmocr # 回归测试的 codebase 路径
|
|||
|
checkpoint_force_download: False # 回归测试是否重新下载模型即使其已经存在
|
|||
|
checkpoint_dir: ../mmdeploy_checkpoints # 回归测试是否下载模型的路径
|
|||
|
images: # 测试使用图片
|
|||
|
img_224x224: &img_224x224 ./tests/data/tiger.jpeg
|
|||
|
img_300x300: &img_300x300
|
|||
|
img_800x1344: &img_cityscapes_800x1344
|
|||
|
img_blank: &img_blank
|
|||
|
metric_info: &metric_info # 指标参数
|
|||
|
hmean-iou: # 命名根据 metafile.Results.Metrics
|
|||
|
eval_name: hmean-iou # 命名根据 test.py --metrics args 入参名称
|
|||
|
metric_key: 0_hmean-iou:hmean # 命名根据 eval 写入 log 的 key name
|
|||
|
tolerance: 0.1 # 容忍的阈值区间
|
|||
|
task_name: Text Detection # 命名根据模型 metafile.Results.Task
|
|||
|
dataset: ICDAR2015 #命名根据模型 metafile.Results.Dataset
|
|||
|
word_acc: # 同上
|
|||
|
eval_name: acc
|
|||
|
metric_key: 0_word_acc_ignore_case
|
|||
|
tolerance: 0.2
|
|||
|
task_name: Text Recognition
|
|||
|
dataset: IIIT5K
|
|||
|
convert_image: &convert_image # 转换会使用到的图片
|
|||
|
input_img: *img_224x224
|
|||
|
test_img: *img_300x300
|
|||
|
backend_test: &default_backend_test True # 是否对 backend 进行精度测试
|
|||
|
sdk: # SDK 配置文件
|
|||
|
sdk_detection_dynamic: &sdk_detection_dynamic configs/mmocr/text-detection/text-detection_sdk_dynamic.py
|
|||
|
sdk_recognition_dynamic: &sdk_recognition_dynamic configs/mmocr/text-recognition/text-recognition_sdk_dynamic.py
|
|||
|
|
|||
|
onnxruntime:
|
|||
|
pipeline_ort_recognition_static_fp32: &pipeline_ort_recognition_static_fp32
|
|||
|
convert_image: *convert_image # 转换过程中使用的图片
|
|||
|
backend_test: *default_backend_test # 是否进行后端测试,存在则判断,不存在则视为 False
|
|||
|
sdk_config: *sdk_recognition_dynamic # 是否进行SDK测试,存在则使用特定的 SDK config 进行测试,不存在则视为不进行 SDK 测试
|
|||
|
deploy_config: configs/mmocr/text-recognition/text-recognition_onnxruntime_static.py # 使用的 deploy cfg 路径,基于 mmdeploy 的路径
|
|||
|
|
|||
|
pipeline_ort_recognition_dynamic_fp32: &pipeline_ort_recognition_dynamic_fp32
|
|||
|
convert_image: *convert_image
|
|||
|
backend_test: *default_backend_test
|
|||
|
sdk_config: *sdk_recognition_dynamic
|
|||
|
deploy_config: configs/mmocr/text-recognition/text-recognition_onnxruntime_dynamic.py
|
|||
|
|
|||
|
pipeline_ort_detection_dynamic_fp32: &pipeline_ort_detection_dynamic_fp32
|
|||
|
convert_image: *convert_image
|
|||
|
deploy_config: configs/mmocr/text-detection/text-detection_onnxruntime_dynamic.py
|
|||
|
|
|||
|
tensorrt:
|
|||
|
pipeline_trt_recognition_dynamic_fp16: &pipeline_trt_recognition_dynamic_fp16
|
|||
|
convert_image: *convert_image
|
|||
|
backend_test: *default_backend_test
|
|||
|
sdk_config: *sdk_recognition_dynamic
|
|||
|
deploy_config: configs/mmocr/text-recognition/text-recognition_tensorrt-fp16_dynamic-1x32x32-1x32x640.py
|
|||
|
|
|||
|
pipeline_trt_detection_dynamic_fp16: &pipeline_trt_detection_dynamic_fp16
|
|||
|
convert_image: *convert_image
|
|||
|
backend_test: *default_backend_test
|
|||
|
sdk_config: *sdk_detection_dynamic
|
|||
|
deploy_config: configs/mmocr/text-detection/text-detection_tensorrt-fp16_dynamic-320x320-1024x1824.py
|
|||
|
|
|||
|
openvino:
|
|||
|
# 此处省略,内容同上
|
|||
|
ncnn:
|
|||
|
# 此处省略,内容同上
|
|||
|
pplnn:
|
|||
|
# 此处省略,内容同上
|
|||
|
torchscript:
|
|||
|
# 此处省略,内容同上
|
|||
|
|
|||
|
|
|||
|
models:
|
|||
|
- name: crnn # 模型名称
|
|||
|
metafile: configs/textrecog/crnn/metafile.yml # 模型对应的 metafile 的路径,相对于 codebase 的路径
|
|||
|
codebase_model_config_dir: configs/textrecog/crnn # `model_configs` 的父文件夹路径,相对于 codebase 的路径
|
|||
|
model_configs: # 需要测试的 config 名称
|
|||
|
- crnn_academic_dataset.py
|
|||
|
pipelines: # 使用的 pipeline
|
|||
|
- *pipeline_ort_recognition_dynamic_fp32
|
|||
|
|
|||
|
- name: dbnet
|
|||
|
metafile: configs/textdet/dbnet/metafile.yml
|
|||
|
codebase_model_config_dir: configs/textdet/dbnet
|
|||
|
model_configs:
|
|||
|
- dbnet_r18_fpnc_1200e_icdar2015.py
|
|||
|
pipelines:
|
|||
|
- *pipeline_ort_detection_dynamic_fp32
|
|||
|
- *pipeline_trt_detection_dynamic_fp16
|
|||
|
```
|
|||
|
|
|||
|
## 3. 生成的报告
|
|||
|
|
|||
|
### 模板
|
|||
|
|
|||
|
|| model_name | model_config | task_name | model_checkpoint_name | dataset | backend_name | deploy_config | static_or_dynamic | precision_type | conversion_result | fps | metric_1 | metric_2 | metric_n | test_pass |
|
|||
|
|------------|--------------|-----------------|-----------------------|----------|--------------|---------------|-------------------|----------------|-------------------|---|----------|----------|-----------|-----------|-----|
|
|||
|
| 序号 | 模型名称 | model config 路径 | 执行的 task name | `.pth`模型路径 | 数据集名称 | 后端名称 | deploy cfg 路径 | 动态 or 静态 | 测试精度 | 模型转换结果 | FPS 数值 | 指标 1 数值 | 指标 2 数值 | 指标 n 数值 | 后端测试结果 |
|
|||
|
|
|||
|
### 示例
|
|||
|
|
|||
|
这是 MMOCR 生成的报告
|
|||
|
|
|||
|
|| model_name | model_config | task_name | model_checkpoint_name | dataset | backend_name | deploy_config | static_or_dynamic | precision_type | conversion_result | fps | hmean-iou | word_acc | test_pass |
|
|||
|
| ---- | ---------- | ------------------------------------------------------------ | ---------------- | ------------------------------------------------------------ | --------- | --------------- | ------------------------------------------------------------ | ----------------- | -------------- | ----------------- |-----------|----------|-----------| --------- |
|
|||
|
| 0 | crnn | ../mmocr/configs/textrecog/crnn/crnn_academic_dataset.py | Text Recognition | ../mmdeploy_checkpoints/mmocr/crnn/crnn_academic-a723a1c5.pth | IIIT5K | Pytorch| -| - | - | - | - | - | 80.5 | -|
|
|||
|
| 1 | crnn | ../mmocr/configs/textrecog/crnn/crnn_academic_dataset.py | Text Recognition | ${WORK_DIR}/mmocr/crnn/onnxruntime/static/crnn_academic-a723a1c5/end2end.onnx | x| onnxruntime | configs/mmocr/text-recognition/text-recognition_onnxruntime_dynamic.py | static | fp32 | True | 182.21 | - | 80.67 | True|
|
|||
|
| 2 | crnn | ../mmocr/configs/textrecog/crnn/crnn_academic_dataset.py | Text Recognition | ${WORK_DIR}/mmocr/crnn/onnxruntime/static/crnn_academic-a723a1c5 | x| SDK-onnxruntime | configs/mmocr/text-recognition/text-recognition_sdk_dynamic.py | static | fp32 | True | x | - | x | False |
|
|||
|
| 3 | dbnet| ../mmocr/configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py | Text Detection | ../mmdeploy_checkpoints/mmocr/dbnet/dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597.pth | ICDAR2015 | Pytorch| -| - | - | - | - | 0.795 | - | -|
|
|||
|
| 4 | dbnet| ../mmocr/configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py | Text Detection | ../mmdeploy_checkpoints/mmocr/dbnet/dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597.pth | ICDAR | onnxruntime | configs/mmocr/text-detection/text-detection_onnxruntime_dynamic.py | dynamic | fp32 | True | - | - | - | True|
|
|||
|
| 5 | dbnet| ../mmocr/configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py | Text Detection | ${WORK_DIR}/mmocr/dbnet/tensorrt/dynamic/dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597/end2end.engine | ICDAR | tensorrt | configs/mmocr/text-detection/text-detection_tensorrt-fp16_dynamic-320x320-1024x1824.py | dynamic | fp16 | True | 229.06 | 0.793302 | - | True|
|
|||
|
| 6 | dbnet| ../mmocr/configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py | Text Detection | ${WORK_DIR}/mmocr/dbnet/tensorrt/dynamic/dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597 | ICDAR | SDK-tensorrt | configs/mmocr/text-detection/text-detection_sdk_dynamic.py | dynamic | fp16 | True | 140.06 | 0.795073 | - | True|
|
|||
|
|
|||
|
## 4. 支持的后端
|
|||
|
- [x] ONNX Runtime
|
|||
|
- [x] TensorRT
|
|||
|
- [x] PPLNN
|
|||
|
- [x] ncnn
|
|||
|
- [x] OpenVINO
|
|||
|
- [x] TorchScript
|
|||
|
- [x] MMDeploy SDK
|
|||
|
|
|||
|
## 5. 支持的Codebase及其Metric
|
|||
|
- [x] mmdet
|
|||
|
- [x] bbox
|
|||
|
- [x] mmcls
|
|||
|
- [x] accuracy
|
|||
|
- [x] mmseg
|
|||
|
- [x] mIoU
|
|||
|
- [x] mmpose
|
|||
|
- [x] AR
|
|||
|
- [x] AP
|
|||
|
- [x] mmocr
|
|||
|
- [x] hmean
|
|||
|
- [x] acc
|
|||
|
- [x] mmedit
|
|||
|
- [x] PSNR
|
|||
|
- [x] SSIM
|