2022-06-07 18:05:51 +08:00
# TensorRT Support
2021-10-09 14:10:42 +08:00
2022-06-07 18:05:51 +08:00
## Installation
2021-10-09 14:10:42 +08:00
2022-06-07 18:05:51 +08:00
### Install TensorRT
2021-10-09 14:10:42 +08:00
2021-11-03 10:55:50 +08:00
Please install TensorRT 8 follow [install-guide ](https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#installing ).
2021-11-11 18:48:48 +08:00
**Note**:
- `pip Wheel File Installation` is not supported yet in this repo.
2022-06-17 09:19:10 +08:00
2021-11-11 18:48:48 +08:00
- We strongly suggest you install TensorRT through [tar file ](https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#installing-tar )
2022-06-17 09:19:10 +08:00
2021-11-11 18:48:48 +08:00
- After installation, you'd better add TensorRT environment variables to bashrc by:
2022-06-17 09:19:10 +08:00
```bash
cd ${TENSORRT_DIR} # To TensorRT root directory
echo '# set env for TensorRT' >> ~/.bashrc
echo "export TENSORRT_DIR=${TENSORRT_DIR}" >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=$TENSORRT_DIR/lib:$TENSORRT_DIR' >> ~/.bashrc
source ~/.bashrc
```
2021-10-09 14:10:42 +08:00
2022-06-07 18:05:51 +08:00
### Build custom ops
2021-10-09 14:10:42 +08:00
2021-10-26 15:41:31 +08:00
Some custom ops are created to support models in OpenMMLab, and the custom ops can be built as follow:
2021-10-09 14:10:42 +08:00
```bash
2021-12-23 13:23:39 +08:00
cd ${MMDEPLOY_DIR} # To MMDeploy root directory
mkdir -p build & & cd build
2021-12-07 10:57:55 +08:00
cmake -DMMDEPLOY_TARGET_BACKENDS=trt ..
2021-10-09 14:10:42 +08:00
make -j$(nproc)
```
2021-10-26 15:41:31 +08:00
If you haven't installed TensorRT in the default path, Please add `-DTENSORRT_DIR` flag in CMake.
2021-10-09 14:10:42 +08:00
```bash
2021-12-07 10:57:55 +08:00
cmake -DMMDEPLOY_TARGET_BACKENDS=trt -DTENSORRT_DIR=${TENSORRT_DIR} ..
2021-10-09 14:10:42 +08:00
make -j$(nproc)
```
2022-06-07 18:05:51 +08:00
## Convert model
2021-10-26 15:41:31 +08:00
2022-06-07 18:05:51 +08:00
Please follow the tutorial in [How to convert model ](../02-how-to-run/convert_model.md ). **Note** that the device must be `cuda` device.
2021-10-26 15:41:31 +08:00
2022-06-07 18:05:51 +08:00
### Int8 Support
2021-10-26 15:41:31 +08:00
Since TensorRT supports INT8 mode, a custom dataset config can be given to calibrate the model. Following is an example for MMDetection:
```python
# calibration_dataset.py
# dataset settings, same format as the codebase in OpenMMLab
dataset_type = 'CalibrationDataset'
data_root = 'calibration/dataset/root'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
val=dict(
type=dataset_type,
ann_file=data_root + 'val_annotations.json',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'test_annotations.json',
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='bbox')
```
Convert your model with this calibration dataset:
```python
python tools/deploy.py \
...
--calib-dataset-cfg calibration_dataset.py
```
If the calibration dataset is not given, the data will be calibrated with the dataset in model config.
2022-06-07 18:05:51 +08:00
## FAQs
2021-10-26 15:41:31 +08:00
2021-11-03 10:55:50 +08:00
- Error `Cannot found TensorRT headers` or `Cannot found TensorRT libs`
Try cmake with flag `-DTENSORRT_DIR` :
```bash
cmake -DBUILD_TENSORRT_OPS=ON -DTENSORRT_DIR=${TENSORRT_DIR} ..
make -j$(nproc)
```
Please make sure there are libs and headers in `${TENSORRT_DIR}` .
2021-10-26 15:41:31 +08:00
- Error `error: parameter check failed at: engine.cpp::setBindingDimensions::1046, condition: profileMinDims.d[i] <= dimensions.d[i]`
There is an input shape limit in deployment config:
```python
backend_config = dict(
# other configs
model_inputs=[
dict(
input_shapes=dict(
input=dict(
min_shape=[1, 3, 320, 320],
opt_shape=[1, 3, 800, 1344],
max_shape=[1, 3, 1344, 1344])))
])
# other configs
```
The shape of the tensor `input` must be limited between `input_shapes["input"]["min_shape"]` and `input_shapes["input"]["max_shape"]` .
- Error `error: [TensorRT] INTERNAL ERROR: Assertion failed: cublasStatus == CUBLAS_STATUS_SUCCESS`
TRT 7.2.1 switches to use cuBLASLt (previously it was cuBLAS). cuBLASLt is the default choice for SM version >= 7.0. However, you may need CUDA-10.2 Patch 1 (Released Aug 26, 2020) to resolve some cuBLASLt issues. Another option is to use the new TacticSource API and disable cuBLASLt tactics if you don't want to upgrade.
Read [this ](https://forums.developer.nvidia.com/t/matrixmultiply-failed-on-tensorrt-7-2-1/158187/4 ) for detail.
2022-01-24 14:43:38 +08:00
2022-06-07 18:05:51 +08:00
- Install mmdeploy on Jetson
2022-01-24 14:43:38 +08:00
2022-06-07 18:05:51 +08:00
We provide a tutorial to get start on Jetsons [here ](../01-how-to-build/jetsons.md ).