2021-11-30 15:00:37 +08:00
|
|
|
# Copyright (c) OpenMMLab. All rights reserved.
|
2021-09-29 15:02:58 +08:00
|
|
|
import onnx
|
2021-09-08 13:42:15 +08:00
|
|
|
import pytest
|
|
|
|
import torch
|
2021-09-27 11:16:23 +08:00
|
|
|
import torch.nn as nn
|
2021-12-23 16:43:30 +08:00
|
|
|
from mmcv import Config
|
2021-09-29 15:02:58 +08:00
|
|
|
from onnx.helper import (make_graph, make_model, make_node,
|
|
|
|
make_tensor_value_info)
|
2021-09-08 13:42:15 +08:00
|
|
|
|
2021-10-26 10:30:14 +08:00
|
|
|
from mmdeploy.core import RewriterContext
|
2021-09-29 15:02:58 +08:00
|
|
|
from mmdeploy.utils.test import WrapFunction, assert_allclose
|
2021-09-28 14:20:04 +08:00
|
|
|
from .utils import TestNCNNExporter, TestOnnxRTExporter, TestTensorRTExporter
|
2021-09-08 13:42:15 +08:00
|
|
|
|
|
|
|
TEST_ONNXRT = TestOnnxRTExporter()
|
2021-09-27 11:16:23 +08:00
|
|
|
TEST_TENSORRT = TestTensorRTExporter()
|
2021-09-28 14:20:04 +08:00
|
|
|
TEST_NCNN = TestNCNNExporter()
|
2021-09-08 13:42:15 +08:00
|
|
|
|
|
|
|
|
Dev v0.4.0 (#301)
* bump version to v0.4.0
* [Enhancement] Make rewriter more powerful (#150)
* Finish function tests
* lint
* resolve comments
* Fix tests
* docstring & fix
* Complement informations
* lint
* Add example
* Fix version
* Remove todo
Co-authored-by: RunningLeon <mnsheng@yeah.net>
* Torchscript support (#159)
* support torchscript
* add nms
* add torchscript configs and update deploy process and dump-info
* typescript -> torchscript
* add torchscript custom extension support
* add ts custom ops again
* support mmseg unet
* [WIP] add optimizer for torchscript (#119)
* add passes
* add python api
* Torchscript optimizer python api (#121)
* add passes
* add python api
* use python api instead of executable
* Merge Master, update optimizer (#151)
* [Feature] add yolox ncnn (#29)
* add yolox ncnn
* add ncnn android performance of yolox
* add ut
* fix lint
* fix None bugs for ncnn
* test codecov
* test codecov
* add device
* fix yapf
* remove if-else for img shape
* use channelshuffle optimize
* change benchmark after channelshuffle
* fix yapf
* fix yapf
* fuse continuous reshape
* fix static shape deploy
* fix code
* drop pad
* only static shape
* fix static
* fix docstring
* Added mask overlay to output image, changed fprintf info messages to … (#55)
* Added mask overlay to output image, changed fprintf info messages to stdout
* Improved box filtering (filter area/score), make sure roi coordinates stay within bounds
* clang-format
* Support UNet in mmseg (#77)
* Repeatdataset in train has no CLASSES & PALETTE
* update result for unet
* update docstring for mmdet
* remove ppl for unet in docs
* fix ort wrap about input type (#81)
* Fix memleak (#86)
* delete []
* fix build error when enble MMDEPLOY_ACTIVE_LEVEL
* fix lint
* [Doc] Nano benchmark and tutorial (#71)
* add cls benchmark
* add nano zh-cn benchmark and en tutorial
* add device row
* add doc path to index.rst
* fix typo
* [Fix] fix missing deploy_core (#80)
* fix missing deploy_core
* mv flag to demo
* target link
* [Docs] Fix links in Chinese doc (#84)
* Fix docs in Chinese link
* Fix links
* Delete symbolic link and add links to html
* delete files
* Fix link
* [Feature] Add docker files (#67)
* add gpu and cpu dockerfile
* fix lint
* fix cpu docker and remove redundant
* use pip instead
* add build arg and readme
* fix grammar
* update readme
* add chinese doc for dockerfile and add docker build to build.md
* grammar
* refine dockerfiles
* add FAQs
* update Dpplcv_DIR for SDK building
* remove mmcls
* add sdk demos
* fix typo and lint
* update FAQs
* [Fix]fix check_env (#101)
* fix check_env
* update
* Replace convert_syncbatchnorm in mmseg (#93)
* replace convert_syncbatchnorm with revert_sync_batchnorm from mmcv
* change logger
* [Doc] Update FAQ for TensorRT (#96)
* update FAQ
* comment
* [Docs]: Update doc for openvino installation (#102)
* fix docs
* fix docs
* fix docs
* fix mmcv version
* fix docs
* rm blank line
* simplify non batch nms (#99)
* [Enhacement] Allow test.py to save evaluation results (#108)
* Add log file
* Delete debug code
* Rename logger
* resolve comments
* [Enhancement] Support mmocr v0.4+ (#115)
* support mmocr v0.4+
* 0.4.0 -> 0.4.1
* fix onnxruntime wrapper for gpu inference (#123)
* fix ncnn wrapper for ort-gpu
* resolve comment
* fix lint
* Fix typo (#132)
* lock mmcls version (#131)
* [Enhancement] upgrade isort in pre-commit config (#141)
* [Enhancement] upgrade isort in pre-commit config by refering to mmflow pr #87
* fix lint
* remove .isort.cfg and put its known_third_party to setup.cfg
* Fix ci for mmocr (#144)
* fix mmocr unittests
* remove useless
* lock mmdet maximum version to 2.20
* pip install -U numpy
* Fix capture_output (#125)
Co-authored-by: hanrui1sensetime <83800577+hanrui1sensetime@users.noreply.github.com>
Co-authored-by: Johannes L <tehkillerbee@users.noreply.github.com>
Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: VVsssssk <88368822+VVsssssk@users.noreply.github.com>
Co-authored-by: lvhan028 <lvhan_028@163.com>
Co-authored-by: AllentDan <41138331+AllentDan@users.noreply.github.com>
Co-authored-by: Yifan Zhou <singlezombie@163.com>
Co-authored-by: 杨培文 (Yang Peiwen) <915505626@qq.com>
Co-authored-by: Semyon Bevzyuk <semen.bevzuk@gmail.com>
* configs for all tasks
* use torchvision roi align
* remote unnecessary code
* fix ut
* fix ut
* export
* det dynamic
* det dynamic
* add ut
* fix ut
* add ut and docs
* fix ut
* skip torchscript ut if no ops available
* add torchscript option to build.md
* update benchmark and resolve comments
* resolve conflicts
* rename configs
* fix mrcnn cuda test
* remove useless
* add version requirements to docs and comments to codes
* enable empty image exporting for torchscript and accelerate ORT inference for MRCNN
* rebase
* update example for torchscript.md
* update FAQs for torchscript.md
* resolve comments
* only use torchvision roi_align for torchscript
* fix ut
* use torchvision roi align when pool model is avg
* resolve comments
Co-authored-by: grimoire <streetyao@live.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
Co-authored-by: hanrui1sensetime <83800577+hanrui1sensetime@users.noreply.github.com>
Co-authored-by: Johannes L <tehkillerbee@users.noreply.github.com>
Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: VVsssssk <88368822+VVsssssk@users.noreply.github.com>
Co-authored-by: lvhan028 <lvhan_028@163.com>
Co-authored-by: Yifan Zhou <singlezombie@163.com>
Co-authored-by: 杨培文 (Yang Peiwen) <915505626@qq.com>
Co-authored-by: Semyon Bevzyuk <semen.bevzuk@gmail.com>
* Update supported mmseg models (#181)
* fix ocrnet cascade decoder
* update mmseg support models
* update mmseg configs
* support emanet and icnet
* set max K of TopK for tensorrt
* update supported models for mmseg in docs
* add test for emamodule
* add configs and update docs
* Update docs
* update benchmark
* [Features]Support mmdet3d (#103)
* add mmdet3d code
* add code
* update code
* [log]This commit finish pointpillar export and evaluate on onnxruntime.The model is sample with nvidia repo model
* add tensorrt config
* fix config
* update
* support for tensorrt
* add config
* fix config`
* fix apis about torch2onnx
* update
* mmdet3d deploy version1.0
* map is ok
* fix code
* version1.0
* fix code
* fix visual
* fix bug
* tensorrt support success
* add docstring
* add docs
* fix docs
* fix comments
* fix comment
* fix comment
* fix openvino wrapper
* add unit test
* fix device about cpu
* fix comment
* fix show_result
* fix lint
* fix requirments
* remove ci about det3d
* fix ut
* add ut data
* support for new version pointpillars
* fix comment
* fix support_list
* fix comments
* fix config name
* [Enhancement] Update pad logic in detection heads (#168)
* pad with register
* fix lint
Co-authored-by: AllentDan <dongchunyu@sensetime.com>
* [Enhancement] Additional arguments support for OpenVINO Model Optimizer (#178)
* Add mo args.
* [Docs]: update docs and argument descriptions (#196)
* bump version to v0.4.0
* update docs and argument descriptions
* revert version change
* fix unnecessary change of config for dynamic exportation (#199)
* fix mmcls get classes (#215)
* fix mmcls get classes
* resolve comment
* resolve comment
* Add ModelOptimizerOptions.
* Fix merge bugs.
* Update mmpose.md (#224)
* [Dostring]add example in apis docstring (#214)
* add example in apis docstring
* add backend example in docstring
* rm blank line
* Fixed get_mo_options_from_cfg args
* fix l2norm test
Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: Haofan Wang <frankmiracle@outlook.com>
Co-authored-by: VVsssssk <88368822+VVsssssk@users.noreply.github.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
* [Enhancement] Switch to statically typed Value::Any (#209)
* replace std::any with StaticAny
* fix __compare_typeid
* remove fallback id support
* constraint on traits::TypeId<T>::value
* fix includes
* [Enhancement] TensorRT DCN support (#205)
* add tensorrt dcn support
* fix lint
* remove roi_align plugin for ORT (#258)
* remove roi_align plugin
* remove ut
* skip single_roi_extractor UT for ORT in CI
* move align to symbolic and update docs
* recover UT
* resolve comments
* [Enhancement]: Support fcn_unet deployment with dynamic shape (#251)
* support mmseg fcn+unet dynamic shape
* add test
* fix ci
* fix units
* resolve comments
* [Enhancement] fix-cmake-relocatable (#223)
* require user to specify xxx_dir
* fix line ending
* fix end-of-file-fixer
* try to fix ld cudart cublas
* add ENV var search
* fix CMAKE_CUDA_COMPILER
* cpu, cuda should all work well
* remove commented code
* fix ncnn example find ncnn package (#282)
* table format is wrong (#283)
* update pre-commit (#284)
* update pre-commit
* fix clang-format
* fix mmseg config (#281)
* fix mmseg config
* fix mmpose evaluate outputs
* fix lint
* update pre-commit config
* fix lint
* Revert "update pre-commit config"
This reverts commit c3fd71611f0b79dfa9ad73fc0f4555c1b3563665.
* miss code symbol (#296)
* refactor cmake build (#295)
* add-mmpose-sdk (#259)
* Torchscript support (#159)
* support torchscript
* add nms
* add torchscript configs and update deploy process and dump-info
* typescript -> torchscript
* add torchscript custom extension support
* add ts custom ops again
* support mmseg unet
* [WIP] add optimizer for torchscript (#119)
* add passes
* add python api
* Torchscript optimizer python api (#121)
* add passes
* add python api
* use python api instead of executable
* Merge Master, update optimizer (#151)
* [Feature] add yolox ncnn (#29)
* add yolox ncnn
* add ncnn android performance of yolox
* add ut
* fix lint
* fix None bugs for ncnn
* test codecov
* test codecov
* add device
* fix yapf
* remove if-else for img shape
* use channelshuffle optimize
* change benchmark after channelshuffle
* fix yapf
* fix yapf
* fuse continuous reshape
* fix static shape deploy
* fix code
* drop pad
* only static shape
* fix static
* fix docstring
* Added mask overlay to output image, changed fprintf info messages to … (#55)
* Added mask overlay to output image, changed fprintf info messages to stdout
* Improved box filtering (filter area/score), make sure roi coordinates stay within bounds
* clang-format
* Support UNet in mmseg (#77)
* Repeatdataset in train has no CLASSES & PALETTE
* update result for unet
* update docstring for mmdet
* remove ppl for unet in docs
* fix ort wrap about input type (#81)
* Fix memleak (#86)
* delete []
* fix build error when enble MMDEPLOY_ACTIVE_LEVEL
* fix lint
* [Doc] Nano benchmark and tutorial (#71)
* add cls benchmark
* add nano zh-cn benchmark and en tutorial
* add device row
* add doc path to index.rst
* fix typo
* [Fix] fix missing deploy_core (#80)
* fix missing deploy_core
* mv flag to demo
* target link
* [Docs] Fix links in Chinese doc (#84)
* Fix docs in Chinese link
* Fix links
* Delete symbolic link and add links to html
* delete files
* Fix link
* [Feature] Add docker files (#67)
* add gpu and cpu dockerfile
* fix lint
* fix cpu docker and remove redundant
* use pip instead
* add build arg and readme
* fix grammar
* update readme
* add chinese doc for dockerfile and add docker build to build.md
* grammar
* refine dockerfiles
* add FAQs
* update Dpplcv_DIR for SDK building
* remove mmcls
* add sdk demos
* fix typo and lint
* update FAQs
* [Fix]fix check_env (#101)
* fix check_env
* update
* Replace convert_syncbatchnorm in mmseg (#93)
* replace convert_syncbatchnorm with revert_sync_batchnorm from mmcv
* change logger
* [Doc] Update FAQ for TensorRT (#96)
* update FAQ
* comment
* [Docs]: Update doc for openvino installation (#102)
* fix docs
* fix docs
* fix docs
* fix mmcv version
* fix docs
* rm blank line
* simplify non batch nms (#99)
* [Enhacement] Allow test.py to save evaluation results (#108)
* Add log file
* Delete debug code
* Rename logger
* resolve comments
* [Enhancement] Support mmocr v0.4+ (#115)
* support mmocr v0.4+
* 0.4.0 -> 0.4.1
* fix onnxruntime wrapper for gpu inference (#123)
* fix ncnn wrapper for ort-gpu
* resolve comment
* fix lint
* Fix typo (#132)
* lock mmcls version (#131)
* [Enhancement] upgrade isort in pre-commit config (#141)
* [Enhancement] upgrade isort in pre-commit config by refering to mmflow pr #87
* fix lint
* remove .isort.cfg and put its known_third_party to setup.cfg
* Fix ci for mmocr (#144)
* fix mmocr unittests
* remove useless
* lock mmdet maximum version to 2.20
* pip install -U numpy
* Fix capture_output (#125)
Co-authored-by: hanrui1sensetime <83800577+hanrui1sensetime@users.noreply.github.com>
Co-authored-by: Johannes L <tehkillerbee@users.noreply.github.com>
Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: VVsssssk <88368822+VVsssssk@users.noreply.github.com>
Co-authored-by: lvhan028 <lvhan_028@163.com>
Co-authored-by: AllentDan <41138331+AllentDan@users.noreply.github.com>
Co-authored-by: Yifan Zhou <singlezombie@163.com>
Co-authored-by: 杨培文 (Yang Peiwen) <915505626@qq.com>
Co-authored-by: Semyon Bevzyuk <semen.bevzuk@gmail.com>
* configs for all tasks
* use torchvision roi align
* remote unnecessary code
* fix ut
* fix ut
* export
* det dynamic
* det dynamic
* add ut
* fix ut
* add ut and docs
* fix ut
* skip torchscript ut if no ops available
* add torchscript option to build.md
* update benchmark and resolve comments
* resolve conflicts
* rename configs
* fix mrcnn cuda test
* remove useless
* add version requirements to docs and comments to codes
* enable empty image exporting for torchscript and accelerate ORT inference for MRCNN
* rebase
* update example for torchscript.md
* update FAQs for torchscript.md
* resolve comments
* only use torchvision roi_align for torchscript
* fix ut
* use torchvision roi align when pool model is avg
* resolve comments
Co-authored-by: grimoire <streetyao@live.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
Co-authored-by: hanrui1sensetime <83800577+hanrui1sensetime@users.noreply.github.com>
Co-authored-by: Johannes L <tehkillerbee@users.noreply.github.com>
Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: VVsssssk <88368822+VVsssssk@users.noreply.github.com>
Co-authored-by: lvhan028 <lvhan_028@163.com>
Co-authored-by: Yifan Zhou <singlezombie@163.com>
Co-authored-by: 杨培文 (Yang Peiwen) <915505626@qq.com>
Co-authored-by: Semyon Bevzyuk <semen.bevzuk@gmail.com>
* Update supported mmseg models (#181)
* fix ocrnet cascade decoder
* update mmseg support models
* update mmseg configs
* support emanet and icnet
* set max K of TopK for tensorrt
* update supported models for mmseg in docs
* add test for emamodule
* add configs and update docs
* Update docs
* update benchmark
* [Features]Support mmdet3d (#103)
* add mmdet3d code
* add code
* update code
* [log]This commit finish pointpillar export and evaluate on onnxruntime.The model is sample with nvidia repo model
* add tensorrt config
* fix config
* update
* support for tensorrt
* add config
* fix config`
* fix apis about torch2onnx
* update
* mmdet3d deploy version1.0
* map is ok
* fix code
* version1.0
* fix code
* fix visual
* fix bug
* tensorrt support success
* add docstring
* add docs
* fix docs
* fix comments
* fix comment
* fix comment
* fix openvino wrapper
* add unit test
* fix device about cpu
* fix comment
* fix show_result
* fix lint
* fix requirments
* remove ci about det3d
* fix ut
* add ut data
* support for new version pointpillars
* fix comment
* fix support_list
* fix comments
* fix config name
* [Enhancement] Additional arguments support for OpenVINO Model Optimizer (#178)
* Add mo args.
* [Docs]: update docs and argument descriptions (#196)
* bump version to v0.4.0
* update docs and argument descriptions
* revert version change
* fix unnecessary change of config for dynamic exportation (#199)
* fix mmcls get classes (#215)
* fix mmcls get classes
* resolve comment
* resolve comment
* Add ModelOptimizerOptions.
* Fix merge bugs.
* Update mmpose.md (#224)
* [Dostring]add example in apis docstring (#214)
* add example in apis docstring
* add backend example in docstring
* rm blank line
* Fixed get_mo_options_from_cfg args
* fix l2norm test
Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: Haofan Wang <frankmiracle@outlook.com>
Co-authored-by: VVsssssk <88368822+VVsssssk@users.noreply.github.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
* add-mmpose-codebase
* fix ci
* fix img_shape after TopDownAffine
* rename TopDown module -> XheadDecode & implement regression decode
* align keypoints_from_heatmap
* remove hardcode keypoint_head, need refactor, current only support topdown config
* add mmpose python api
* update mmpose-python code
* can't clip fake box
* fix rebase error
* fix rebase error
* link mspn decoder to base decoder
* fix ci
* compile with gcc7.5
* remove no use code
* fix
* fix prompt
* remove unnecessary cv::parallel_for_
* rewrite TopdownHeatmapMultiStageHead.inference_model
* add comment
* add more detail docstring why use _cs2xyxy in sdk backend
* fix Registry name
* remove no use param & add comment of output result
Co-authored-by: AllentDan <41138331+AllentDan@users.noreply.github.com>
Co-authored-by: grimoire <streetyao@live.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
Co-authored-by: hanrui1sensetime <83800577+hanrui1sensetime@users.noreply.github.com>
Co-authored-by: Johannes L <tehkillerbee@users.noreply.github.com>
Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: VVsssssk <88368822+VVsssssk@users.noreply.github.com>
Co-authored-by: lvhan028 <lvhan_028@163.com>
Co-authored-by: Yifan Zhou <singlezombie@163.com>
Co-authored-by: 杨培文 (Yang Peiwen) <915505626@qq.com>
Co-authored-by: Semyon Bevzyuk <semen.bevzuk@gmail.com>
Co-authored-by: Haofan Wang <frankmiracle@outlook.com>
* update faq about WinError 1455 (#297)
* update faq about WinError 1455
* Update faq.md
* Update faq.md
* fix ci
Co-authored-by: chenxin2 <chenxin2@sensetime.com>
* [Feature]Support centerpoint (#252)
* bump version to v0.4.0
* [Enhancement] Make rewriter more powerful (#150)
* Finish function tests
* lint
* resolve comments
* Fix tests
* docstring & fix
* Complement informations
* lint
* Add example
* Fix version
* Remove todo
Co-authored-by: RunningLeon <mnsheng@yeah.net>
* Torchscript support (#159)
* support torchscript
* add nms
* add torchscript configs and update deploy process and dump-info
* typescript -> torchscript
* add torchscript custom extension support
* add ts custom ops again
* support mmseg unet
* [WIP] add optimizer for torchscript (#119)
* add passes
* add python api
* Torchscript optimizer python api (#121)
* add passes
* add python api
* use python api instead of executable
* Merge Master, update optimizer (#151)
* [Feature] add yolox ncnn (#29)
* add yolox ncnn
* add ncnn android performance of yolox
* add ut
* fix lint
* fix None bugs for ncnn
* test codecov
* test codecov
* add device
* fix yapf
* remove if-else for img shape
* use channelshuffle optimize
* change benchmark after channelshuffle
* fix yapf
* fix yapf
* fuse continuous reshape
* fix static shape deploy
* fix code
* drop pad
* only static shape
* fix static
* fix docstring
* Added mask overlay to output image, changed fprintf info messages to … (#55)
* Added mask overlay to output image, changed fprintf info messages to stdout
* Improved box filtering (filter area/score), make sure roi coordinates stay within bounds
* clang-format
* Support UNet in mmseg (#77)
* Repeatdataset in train has no CLASSES & PALETTE
* update result for unet
* update docstring for mmdet
* remove ppl for unet in docs
* fix ort wrap about input type (#81)
* Fix memleak (#86)
* delete []
* fix build error when enble MMDEPLOY_ACTIVE_LEVEL
* fix lint
* [Doc] Nano benchmark and tutorial (#71)
* add cls benchmark
* add nano zh-cn benchmark and en tutorial
* add device row
* add doc path to index.rst
* fix typo
* [Fix] fix missing deploy_core (#80)
* fix missing deploy_core
* mv flag to demo
* target link
* [Docs] Fix links in Chinese doc (#84)
* Fix docs in Chinese link
* Fix links
* Delete symbolic link and add links to html
* delete files
* Fix link
* [Feature] Add docker files (#67)
* add gpu and cpu dockerfile
* fix lint
* fix cpu docker and remove redundant
* use pip instead
* add build arg and readme
* fix grammar
* update readme
* add chinese doc for dockerfile and add docker build to build.md
* grammar
* refine dockerfiles
* add FAQs
* update Dpplcv_DIR for SDK building
* remove mmcls
* add sdk demos
* fix typo and lint
* update FAQs
* [Fix]fix check_env (#101)
* fix check_env
* update
* Replace convert_syncbatchnorm in mmseg (#93)
* replace convert_syncbatchnorm with revert_sync_batchnorm from mmcv
* change logger
* [Doc] Update FAQ for TensorRT (#96)
* update FAQ
* comment
* [Docs]: Update doc for openvino installation (#102)
* fix docs
* fix docs
* fix docs
* fix mmcv version
* fix docs
* rm blank line
* simplify non batch nms (#99)
* [Enhacement] Allow test.py to save evaluation results (#108)
* Add log file
* Delete debug code
* Rename logger
* resolve comments
* [Enhancement] Support mmocr v0.4+ (#115)
* support mmocr v0.4+
* 0.4.0 -> 0.4.1
* fix onnxruntime wrapper for gpu inference (#123)
* fix ncnn wrapper for ort-gpu
* resolve comment
* fix lint
* Fix typo (#132)
* lock mmcls version (#131)
* [Enhancement] upgrade isort in pre-commit config (#141)
* [Enhancement] upgrade isort in pre-commit config by refering to mmflow pr #87
* fix lint
* remove .isort.cfg and put its known_third_party to setup.cfg
* Fix ci for mmocr (#144)
* fix mmocr unittests
* remove useless
* lock mmdet maximum version to 2.20
* pip install -U numpy
* Fix capture_output (#125)
Co-authored-by: hanrui1sensetime <83800577+hanrui1sensetime@users.noreply.github.com>
Co-authored-by: Johannes L <tehkillerbee@users.noreply.github.com>
Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: VVsssssk <88368822+VVsssssk@users.noreply.github.com>
Co-authored-by: lvhan028 <lvhan_028@163.com>
Co-authored-by: AllentDan <41138331+AllentDan@users.noreply.github.com>
Co-authored-by: Yifan Zhou <singlezombie@163.com>
Co-authored-by: 杨培文 (Yang Peiwen) <915505626@qq.com>
Co-authored-by: Semyon Bevzyuk <semen.bevzuk@gmail.com>
* configs for all tasks
* use torchvision roi align
* remote unnecessary code
* fix ut
* fix ut
* export
* det dynamic
* det dynamic
* add ut
* fix ut
* add ut and docs
* fix ut
* skip torchscript ut if no ops available
* add torchscript option to build.md
* update benchmark and resolve comments
* resolve conflicts
* rename configs
* fix mrcnn cuda test
* remove useless
* add version requirements to docs and comments to codes
* enable empty image exporting for torchscript and accelerate ORT inference for MRCNN
* rebase
* update example for torchscript.md
* update FAQs for torchscript.md
* resolve comments
* only use torchvision roi_align for torchscript
* fix ut
* use torchvision roi align when pool model is avg
* resolve comments
Co-authored-by: grimoire <streetyao@live.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
Co-authored-by: hanrui1sensetime <83800577+hanrui1sensetime@users.noreply.github.com>
Co-authored-by: Johannes L <tehkillerbee@users.noreply.github.com>
Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: VVsssssk <88368822+VVsssssk@users.noreply.github.com>
Co-authored-by: lvhan028 <lvhan_028@163.com>
Co-authored-by: Yifan Zhou <singlezombie@163.com>
Co-authored-by: 杨培文 (Yang Peiwen) <915505626@qq.com>
Co-authored-by: Semyon Bevzyuk <semen.bevzuk@gmail.com>
* Update supported mmseg models (#181)
* fix ocrnet cascade decoder
* update mmseg support models
* update mmseg configs
* support emanet and icnet
* set max K of TopK for tensorrt
* update supported models for mmseg in docs
* add test for emamodule
* add configs and update docs
* Update docs
* update benchmark
* [Features]Support mmdet3d (#103)
* add mmdet3d code
* add code
* update code
* [log]This commit finish pointpillar export and evaluate on onnxruntime.The model is sample with nvidia repo model
* add tensorrt config
* fix config
* update
* support for tensorrt
* add config
* fix config`
* fix apis about torch2onnx
* update
* mmdet3d deploy version1.0
* map is ok
* fix code
* version1.0
* fix code
* fix visual
* fix bug
* tensorrt support success
* add docstring
* add docs
* fix docs
* fix comments
* fix comment
* fix comment
* fix openvino wrapper
* add unit test
* fix device about cpu
* fix comment
* fix show_result
* fix lint
* fix requirments
* remove ci about det3d
* fix ut
* add ut data
* support for new version pointpillars
* fix comment
* fix support_list
* fix comments
* fix config name
* [Enhancement] Update pad logic in detection heads (#168)
* pad with register
* fix lint
Co-authored-by: AllentDan <dongchunyu@sensetime.com>
* [Enhancement] Additional arguments support for OpenVINO Model Optimizer (#178)
* Add mo args.
* [Docs]: update docs and argument descriptions (#196)
* bump version to v0.4.0
* update docs and argument descriptions
* revert version change
* fix unnecessary change of config for dynamic exportation (#199)
* fix mmcls get classes (#215)
* fix mmcls get classes
* resolve comment
* resolve comment
* Add ModelOptimizerOptions.
* Fix merge bugs.
* Update mmpose.md (#224)
* [Dostring]add example in apis docstring (#214)
* add example in apis docstring
* add backend example in docstring
* rm blank line
* Fixed get_mo_options_from_cfg args
* fix l2norm test
Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: Haofan Wang <frankmiracle@outlook.com>
Co-authored-by: VVsssssk <88368822+VVsssssk@users.noreply.github.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
* [Enhancement] Switch to statically typed Value::Any (#209)
* replace std::any with StaticAny
* fix __compare_typeid
* remove fallback id support
* constraint on traits::TypeId<T>::value
* fix includes
* support for centerpoint
* [Enhancement] TensorRT DCN support (#205)
* add tensorrt dcn support
* fix lint
* add docstring and dcn model support
* add centerpoint ut and docs
* add config and fix input rank
* fix merge error
* fix a bug
* fix comment
* [Doc] update benchmark add supported-model-list (#286)
* update benchmark add supported-model-list
* fix lint
* fix lint
* loc mmocr maximum version
* fix ut
Co-authored-by: maningsheng <mnsheng@yeah.net>
Co-authored-by: Yifan Zhou <singlezombie@163.com>
Co-authored-by: AllentDan <41138331+AllentDan@users.noreply.github.com>
Co-authored-by: grimoire <streetyao@live.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
Co-authored-by: hanrui1sensetime <83800577+hanrui1sensetime@users.noreply.github.com>
Co-authored-by: Johannes L <tehkillerbee@users.noreply.github.com>
Co-authored-by: lvhan028 <lvhan_028@163.com>
Co-authored-by: 杨培文 (Yang Peiwen) <915505626@qq.com>
Co-authored-by: Semyon Bevzyuk <semen.bevzuk@gmail.com>
Co-authored-by: AllentDan <dongchunyu@sensetime.com>
Co-authored-by: Haofan Wang <frankmiracle@outlook.com>
Co-authored-by: lzhangzz <lzhang329@gmail.com>
Co-authored-by: maningsheng <mnsheng@yeah.net>
Co-authored-by: Yifan Zhou <singlezombie@163.com>
Co-authored-by: AllentDan <41138331+AllentDan@users.noreply.github.com>
Co-authored-by: grimoire <streetyao@live.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
Co-authored-by: hanrui1sensetime <83800577+hanrui1sensetime@users.noreply.github.com>
Co-authored-by: Johannes L <tehkillerbee@users.noreply.github.com>
Co-authored-by: VVsssssk <88368822+VVsssssk@users.noreply.github.com>
Co-authored-by: 杨培文 (Yang Peiwen) <915505626@qq.com>
Co-authored-by: Semyon Bevzyuk <semen.bevzuk@gmail.com>
Co-authored-by: AllentDan <dongchunyu@sensetime.com>
Co-authored-by: Haofan Wang <frankmiracle@outlook.com>
Co-authored-by: lzhangzz <lzhang329@gmail.com>
Co-authored-by: Chen Xin <xinchen.tju@gmail.com>
Co-authored-by: chenxin2 <chenxin2@sensetime.com>
2022-04-01 18:14:23 +08:00
|
|
|
@pytest.mark.parametrize('backend', [TEST_TENSORRT])
|
2021-09-08 13:42:15 +08:00
|
|
|
@pytest.mark.parametrize('pool_h,pool_w,spatial_scale,sampling_ratio',
|
|
|
|
[(2, 2, 1.0, 2), (4, 4, 2.0, 4)])
|
|
|
|
def test_roi_align(backend,
|
|
|
|
pool_h,
|
|
|
|
pool_w,
|
|
|
|
spatial_scale,
|
|
|
|
sampling_ratio,
|
2021-09-27 11:16:23 +08:00
|
|
|
input_list=None,
|
|
|
|
save_dir=None):
|
2021-09-08 13:42:15 +08:00
|
|
|
backend.check_env()
|
2021-09-27 11:16:23 +08:00
|
|
|
|
|
|
|
if input_list is None:
|
|
|
|
input = torch.rand(1, 1, 16, 16, dtype=torch.float32)
|
|
|
|
single_roi = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
|
|
|
|
else:
|
|
|
|
input = torch.tensor(input_list[0], dtype=torch.float32)
|
|
|
|
single_roi = torch.tensor(input_list[1], dtype=torch.float32)
|
|
|
|
|
2021-09-08 13:42:15 +08:00
|
|
|
from mmcv.ops import roi_align
|
|
|
|
|
|
|
|
def wrapped_function(torch_input, torch_rois):
|
|
|
|
return roi_align(torch_input, torch_rois, (pool_w, pool_h),
|
|
|
|
spatial_scale, sampling_ratio, 'avg', True)
|
|
|
|
|
2021-09-27 11:16:23 +08:00
|
|
|
wrapped_model = WrapFunction(wrapped_function).eval()
|
2021-09-08 13:42:15 +08:00
|
|
|
|
2021-12-23 16:43:30 +08:00
|
|
|
with RewriterContext(
|
|
|
|
Config({'backend_config': {
|
|
|
|
'type': backend.backend_name
|
|
|
|
}}),
|
|
|
|
backend=backend.backend_name,
|
|
|
|
opset=11):
|
2021-10-26 10:30:14 +08:00
|
|
|
backend.run_and_validate(
|
|
|
|
wrapped_model, [input, single_roi],
|
|
|
|
'roi_align',
|
|
|
|
input_names=['input', 'rois'],
|
|
|
|
output_names=['roi_feat'],
|
|
|
|
save_dir=save_dir)
|
2021-09-27 11:16:23 +08:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('backend', [TEST_TENSORRT, TEST_ONNXRT])
|
|
|
|
@pytest.mark.parametrize('mode', ['bilinear', 'nearest'])
|
|
|
|
@pytest.mark.parametrize('padding_mode', ['zeros', 'border', 'reflection'])
|
|
|
|
@pytest.mark.parametrize('align_corners', [True, False])
|
|
|
|
def test_grid_sample(backend,
|
|
|
|
mode,
|
|
|
|
padding_mode,
|
|
|
|
align_corners,
|
|
|
|
input_list=None,
|
|
|
|
save_dir=None):
|
|
|
|
backend.check_env()
|
|
|
|
|
|
|
|
if input_list is None:
|
|
|
|
input = torch.rand(1, 1, 10, 10)
|
|
|
|
else:
|
|
|
|
input = torch.tensor(input_list[0])
|
|
|
|
grid = torch.Tensor([[[1, 0, 0], [0, 1, 0]]])
|
|
|
|
grid = nn.functional.affine_grid(
|
|
|
|
grid, (1, 1, input.shape[2] * 2, input.shape[3] * 2)).type_as(input)
|
|
|
|
|
|
|
|
def wrapped_function(inputs, grid):
|
|
|
|
return nn.functional.grid_sample(
|
|
|
|
inputs,
|
|
|
|
grid,
|
|
|
|
mode=mode,
|
|
|
|
padding_mode=padding_mode,
|
|
|
|
align_corners=align_corners)
|
|
|
|
|
|
|
|
wrapped_model = WrapFunction(wrapped_function).eval()
|
|
|
|
|
2021-12-23 16:43:30 +08:00
|
|
|
with RewriterContext(
|
|
|
|
Config({'backend_config': {
|
|
|
|
'type': backend.backend_name
|
|
|
|
}}),
|
|
|
|
backend=backend.backend_name,
|
|
|
|
opset=11):
|
2021-10-26 10:30:14 +08:00
|
|
|
backend.run_and_validate(
|
|
|
|
wrapped_model, [input, grid],
|
|
|
|
'grid_sampler',
|
|
|
|
input_names=['input', 'grid'],
|
|
|
|
output_names=['output'],
|
|
|
|
save_dir=save_dir)
|
2021-09-27 11:16:23 +08:00
|
|
|
|
|
|
|
|
2021-12-01 16:31:10 +08:00
|
|
|
@pytest.mark.parametrize('backend', [TEST_TENSORRT])
|
|
|
|
@pytest.mark.parametrize('dynamic_export', [True, False])
|
|
|
|
@pytest.mark.parametrize('mode', ['bicubic', 'nearest'])
|
|
|
|
@pytest.mark.parametrize('align_corners', [True, False])
|
2022-02-28 11:25:13 +08:00
|
|
|
@pytest.mark.parametrize('output_size', [[10, 20], None])
|
|
|
|
@pytest.mark.parametrize('scale_factor', [2])
|
2021-12-01 16:31:10 +08:00
|
|
|
@pytest.mark.parametrize('n, c, h, w', [(2, 3, 5, 10)])
|
|
|
|
def test_bicubic_interpolate(backend,
|
|
|
|
dynamic_export,
|
|
|
|
mode,
|
|
|
|
align_corners,
|
2022-02-28 11:25:13 +08:00
|
|
|
output_size,
|
2021-12-01 16:31:10 +08:00
|
|
|
scale_factor,
|
|
|
|
n,
|
|
|
|
c,
|
|
|
|
h,
|
|
|
|
w,
|
|
|
|
input_list=None,
|
|
|
|
save_dir=None):
|
|
|
|
backend.check_env()
|
|
|
|
|
|
|
|
if input_list is None:
|
|
|
|
input = torch.randn(n, c, h, w)
|
|
|
|
if dynamic_export:
|
|
|
|
dynamic_axes = {
|
|
|
|
'input': {
|
|
|
|
0: 'n',
|
|
|
|
2: 'h',
|
|
|
|
3: 'w',
|
|
|
|
},
|
|
|
|
'output': {
|
|
|
|
0: 'n',
|
|
|
|
2: 'h',
|
|
|
|
3: 'w',
|
|
|
|
},
|
|
|
|
}
|
|
|
|
else:
|
|
|
|
dynamic_axes = None
|
|
|
|
|
|
|
|
if mode == 'nearest':
|
|
|
|
align_corners = None
|
2022-02-28 11:25:13 +08:00
|
|
|
if output_size is None:
|
|
|
|
resize = nn.Upsample(
|
|
|
|
scale_factor=scale_factor, mode=mode, align_corners=align_corners)
|
|
|
|
else:
|
|
|
|
resize = nn.Upsample(
|
|
|
|
size=output_size, mode=mode, align_corners=align_corners)
|
2021-12-01 16:31:10 +08:00
|
|
|
expected_result = resize(input).cuda()
|
|
|
|
wrapped_model = WrapFunction(resize).eval()
|
|
|
|
|
|
|
|
with RewriterContext(cfg={}, backend=backend.backend_name, opset=11):
|
|
|
|
backend.run_and_validate(
|
|
|
|
wrapped_model, [input],
|
|
|
|
'bicubic_interpolate',
|
|
|
|
input_names=['input'],
|
|
|
|
dynamic_axes=dynamic_axes,
|
|
|
|
output_names=['output'],
|
|
|
|
save_dir=save_dir,
|
|
|
|
expected_result=expected_result)
|
|
|
|
|
|
|
|
|
2021-09-27 11:16:23 +08:00
|
|
|
@pytest.mark.parametrize('backend', [TEST_TENSORRT, TEST_ONNXRT])
|
|
|
|
@pytest.mark.parametrize('in_channels,out_channels,stride,padding,'
|
|
|
|
'dilation,groups,deform_groups,kernel_size',
|
|
|
|
[(3, 64, 1, 0, 1, 1, 1, 3),
|
|
|
|
(1, 32, 3, 2, 1, 1, 1, 3)])
|
|
|
|
@pytest.mark.parametrize('bias', [True, False])
|
|
|
|
def test_modulated_deform_conv(backend,
|
|
|
|
in_channels,
|
|
|
|
out_channels,
|
|
|
|
stride,
|
|
|
|
padding,
|
|
|
|
dilation,
|
|
|
|
groups,
|
|
|
|
deform_groups,
|
|
|
|
kernel_size,
|
|
|
|
bias,
|
|
|
|
input_list=None,
|
|
|
|
save_dir=None):
|
|
|
|
backend.check_env()
|
|
|
|
|
|
|
|
if input_list is None:
|
|
|
|
input = torch.rand(
|
|
|
|
1, in_channels, 28, 28, requires_grad=False) # (n, c, h, w)
|
|
|
|
else:
|
|
|
|
input = torch.tensor(input_list[0])
|
|
|
|
conv_offset = nn.Conv2d(
|
|
|
|
in_channels=in_channels,
|
|
|
|
out_channels=deform_groups * 3 * kernel_size * kernel_size,
|
|
|
|
kernel_size=kernel_size,
|
|
|
|
stride=stride,
|
|
|
|
padding=padding,
|
|
|
|
dilation=dilation,
|
|
|
|
bias=True)
|
|
|
|
out = conv_offset(input)
|
|
|
|
o1, o2, mask = torch.chunk(out, 3, dim=1)
|
|
|
|
offset = torch.cat((o1, o2), dim=1)
|
|
|
|
mask = torch.sigmoid(mask)
|
|
|
|
|
|
|
|
from mmcv.ops import ModulatedDeformConv2d
|
|
|
|
model = ModulatedDeformConv2d(in_channels, out_channels, kernel_size,
|
|
|
|
stride, padding, dilation, groups,
|
|
|
|
deform_groups, bias).eval()
|
|
|
|
|
2021-10-26 10:30:14 +08:00
|
|
|
with RewriterContext(cfg={}, backend=backend.backend_name, opset=11):
|
|
|
|
backend.run_and_validate(
|
|
|
|
model, [input, offset, mask],
|
|
|
|
'modulated_deform_conv',
|
|
|
|
input_names=['input', 'offset', 'mask'],
|
|
|
|
output_names=['output'],
|
|
|
|
save_dir=save_dir)
|
2021-09-27 11:16:23 +08:00
|
|
|
|
|
|
|
|
Dev v0.4.0 (#301)
* bump version to v0.4.0
* [Enhancement] Make rewriter more powerful (#150)
* Finish function tests
* lint
* resolve comments
* Fix tests
* docstring & fix
* Complement informations
* lint
* Add example
* Fix version
* Remove todo
Co-authored-by: RunningLeon <mnsheng@yeah.net>
* Torchscript support (#159)
* support torchscript
* add nms
* add torchscript configs and update deploy process and dump-info
* typescript -> torchscript
* add torchscript custom extension support
* add ts custom ops again
* support mmseg unet
* [WIP] add optimizer for torchscript (#119)
* add passes
* add python api
* Torchscript optimizer python api (#121)
* add passes
* add python api
* use python api instead of executable
* Merge Master, update optimizer (#151)
* [Feature] add yolox ncnn (#29)
* add yolox ncnn
* add ncnn android performance of yolox
* add ut
* fix lint
* fix None bugs for ncnn
* test codecov
* test codecov
* add device
* fix yapf
* remove if-else for img shape
* use channelshuffle optimize
* change benchmark after channelshuffle
* fix yapf
* fix yapf
* fuse continuous reshape
* fix static shape deploy
* fix code
* drop pad
* only static shape
* fix static
* fix docstring
* Added mask overlay to output image, changed fprintf info messages to … (#55)
* Added mask overlay to output image, changed fprintf info messages to stdout
* Improved box filtering (filter area/score), make sure roi coordinates stay within bounds
* clang-format
* Support UNet in mmseg (#77)
* Repeatdataset in train has no CLASSES & PALETTE
* update result for unet
* update docstring for mmdet
* remove ppl for unet in docs
* fix ort wrap about input type (#81)
* Fix memleak (#86)
* delete []
* fix build error when enble MMDEPLOY_ACTIVE_LEVEL
* fix lint
* [Doc] Nano benchmark and tutorial (#71)
* add cls benchmark
* add nano zh-cn benchmark and en tutorial
* add device row
* add doc path to index.rst
* fix typo
* [Fix] fix missing deploy_core (#80)
* fix missing deploy_core
* mv flag to demo
* target link
* [Docs] Fix links in Chinese doc (#84)
* Fix docs in Chinese link
* Fix links
* Delete symbolic link and add links to html
* delete files
* Fix link
* [Feature] Add docker files (#67)
* add gpu and cpu dockerfile
* fix lint
* fix cpu docker and remove redundant
* use pip instead
* add build arg and readme
* fix grammar
* update readme
* add chinese doc for dockerfile and add docker build to build.md
* grammar
* refine dockerfiles
* add FAQs
* update Dpplcv_DIR for SDK building
* remove mmcls
* add sdk demos
* fix typo and lint
* update FAQs
* [Fix]fix check_env (#101)
* fix check_env
* update
* Replace convert_syncbatchnorm in mmseg (#93)
* replace convert_syncbatchnorm with revert_sync_batchnorm from mmcv
* change logger
* [Doc] Update FAQ for TensorRT (#96)
* update FAQ
* comment
* [Docs]: Update doc for openvino installation (#102)
* fix docs
* fix docs
* fix docs
* fix mmcv version
* fix docs
* rm blank line
* simplify non batch nms (#99)
* [Enhacement] Allow test.py to save evaluation results (#108)
* Add log file
* Delete debug code
* Rename logger
* resolve comments
* [Enhancement] Support mmocr v0.4+ (#115)
* support mmocr v0.4+
* 0.4.0 -> 0.4.1
* fix onnxruntime wrapper for gpu inference (#123)
* fix ncnn wrapper for ort-gpu
* resolve comment
* fix lint
* Fix typo (#132)
* lock mmcls version (#131)
* [Enhancement] upgrade isort in pre-commit config (#141)
* [Enhancement] upgrade isort in pre-commit config by refering to mmflow pr #87
* fix lint
* remove .isort.cfg and put its known_third_party to setup.cfg
* Fix ci for mmocr (#144)
* fix mmocr unittests
* remove useless
* lock mmdet maximum version to 2.20
* pip install -U numpy
* Fix capture_output (#125)
Co-authored-by: hanrui1sensetime <83800577+hanrui1sensetime@users.noreply.github.com>
Co-authored-by: Johannes L <tehkillerbee@users.noreply.github.com>
Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: VVsssssk <88368822+VVsssssk@users.noreply.github.com>
Co-authored-by: lvhan028 <lvhan_028@163.com>
Co-authored-by: AllentDan <41138331+AllentDan@users.noreply.github.com>
Co-authored-by: Yifan Zhou <singlezombie@163.com>
Co-authored-by: 杨培文 (Yang Peiwen) <915505626@qq.com>
Co-authored-by: Semyon Bevzyuk <semen.bevzuk@gmail.com>
* configs for all tasks
* use torchvision roi align
* remote unnecessary code
* fix ut
* fix ut
* export
* det dynamic
* det dynamic
* add ut
* fix ut
* add ut and docs
* fix ut
* skip torchscript ut if no ops available
* add torchscript option to build.md
* update benchmark and resolve comments
* resolve conflicts
* rename configs
* fix mrcnn cuda test
* remove useless
* add version requirements to docs and comments to codes
* enable empty image exporting for torchscript and accelerate ORT inference for MRCNN
* rebase
* update example for torchscript.md
* update FAQs for torchscript.md
* resolve comments
* only use torchvision roi_align for torchscript
* fix ut
* use torchvision roi align when pool model is avg
* resolve comments
Co-authored-by: grimoire <streetyao@live.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
Co-authored-by: hanrui1sensetime <83800577+hanrui1sensetime@users.noreply.github.com>
Co-authored-by: Johannes L <tehkillerbee@users.noreply.github.com>
Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: VVsssssk <88368822+VVsssssk@users.noreply.github.com>
Co-authored-by: lvhan028 <lvhan_028@163.com>
Co-authored-by: Yifan Zhou <singlezombie@163.com>
Co-authored-by: 杨培文 (Yang Peiwen) <915505626@qq.com>
Co-authored-by: Semyon Bevzyuk <semen.bevzuk@gmail.com>
* Update supported mmseg models (#181)
* fix ocrnet cascade decoder
* update mmseg support models
* update mmseg configs
* support emanet and icnet
* set max K of TopK for tensorrt
* update supported models for mmseg in docs
* add test for emamodule
* add configs and update docs
* Update docs
* update benchmark
* [Features]Support mmdet3d (#103)
* add mmdet3d code
* add code
* update code
* [log]This commit finish pointpillar export and evaluate on onnxruntime.The model is sample with nvidia repo model
* add tensorrt config
* fix config
* update
* support for tensorrt
* add config
* fix config`
* fix apis about torch2onnx
* update
* mmdet3d deploy version1.0
* map is ok
* fix code
* version1.0
* fix code
* fix visual
* fix bug
* tensorrt support success
* add docstring
* add docs
* fix docs
* fix comments
* fix comment
* fix comment
* fix openvino wrapper
* add unit test
* fix device about cpu
* fix comment
* fix show_result
* fix lint
* fix requirments
* remove ci about det3d
* fix ut
* add ut data
* support for new version pointpillars
* fix comment
* fix support_list
* fix comments
* fix config name
* [Enhancement] Update pad logic in detection heads (#168)
* pad with register
* fix lint
Co-authored-by: AllentDan <dongchunyu@sensetime.com>
* [Enhancement] Additional arguments support for OpenVINO Model Optimizer (#178)
* Add mo args.
* [Docs]: update docs and argument descriptions (#196)
* bump version to v0.4.0
* update docs and argument descriptions
* revert version change
* fix unnecessary change of config for dynamic exportation (#199)
* fix mmcls get classes (#215)
* fix mmcls get classes
* resolve comment
* resolve comment
* Add ModelOptimizerOptions.
* Fix merge bugs.
* Update mmpose.md (#224)
* [Dostring]add example in apis docstring (#214)
* add example in apis docstring
* add backend example in docstring
* rm blank line
* Fixed get_mo_options_from_cfg args
* fix l2norm test
Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: Haofan Wang <frankmiracle@outlook.com>
Co-authored-by: VVsssssk <88368822+VVsssssk@users.noreply.github.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
* [Enhancement] Switch to statically typed Value::Any (#209)
* replace std::any with StaticAny
* fix __compare_typeid
* remove fallback id support
* constraint on traits::TypeId<T>::value
* fix includes
* [Enhancement] TensorRT DCN support (#205)
* add tensorrt dcn support
* fix lint
* remove roi_align plugin for ORT (#258)
* remove roi_align plugin
* remove ut
* skip single_roi_extractor UT for ORT in CI
* move align to symbolic and update docs
* recover UT
* resolve comments
* [Enhancement]: Support fcn_unet deployment with dynamic shape (#251)
* support mmseg fcn+unet dynamic shape
* add test
* fix ci
* fix units
* resolve comments
* [Enhancement] fix-cmake-relocatable (#223)
* require user to specify xxx_dir
* fix line ending
* fix end-of-file-fixer
* try to fix ld cudart cublas
* add ENV var search
* fix CMAKE_CUDA_COMPILER
* cpu, cuda should all work well
* remove commented code
* fix ncnn example find ncnn package (#282)
* table format is wrong (#283)
* update pre-commit (#284)
* update pre-commit
* fix clang-format
* fix mmseg config (#281)
* fix mmseg config
* fix mmpose evaluate outputs
* fix lint
* update pre-commit config
* fix lint
* Revert "update pre-commit config"
This reverts commit c3fd71611f0b79dfa9ad73fc0f4555c1b3563665.
* miss code symbol (#296)
* refactor cmake build (#295)
* add-mmpose-sdk (#259)
* Torchscript support (#159)
* support torchscript
* add nms
* add torchscript configs and update deploy process and dump-info
* typescript -> torchscript
* add torchscript custom extension support
* add ts custom ops again
* support mmseg unet
* [WIP] add optimizer for torchscript (#119)
* add passes
* add python api
* Torchscript optimizer python api (#121)
* add passes
* add python api
* use python api instead of executable
* Merge Master, update optimizer (#151)
* [Feature] add yolox ncnn (#29)
* add yolox ncnn
* add ncnn android performance of yolox
* add ut
* fix lint
* fix None bugs for ncnn
* test codecov
* test codecov
* add device
* fix yapf
* remove if-else for img shape
* use channelshuffle optimize
* change benchmark after channelshuffle
* fix yapf
* fix yapf
* fuse continuous reshape
* fix static shape deploy
* fix code
* drop pad
* only static shape
* fix static
* fix docstring
* Added mask overlay to output image, changed fprintf info messages to … (#55)
* Added mask overlay to output image, changed fprintf info messages to stdout
* Improved box filtering (filter area/score), make sure roi coordinates stay within bounds
* clang-format
* Support UNet in mmseg (#77)
* Repeatdataset in train has no CLASSES & PALETTE
* update result for unet
* update docstring for mmdet
* remove ppl for unet in docs
* fix ort wrap about input type (#81)
* Fix memleak (#86)
* delete []
* fix build error when enble MMDEPLOY_ACTIVE_LEVEL
* fix lint
* [Doc] Nano benchmark and tutorial (#71)
* add cls benchmark
* add nano zh-cn benchmark and en tutorial
* add device row
* add doc path to index.rst
* fix typo
* [Fix] fix missing deploy_core (#80)
* fix missing deploy_core
* mv flag to demo
* target link
* [Docs] Fix links in Chinese doc (#84)
* Fix docs in Chinese link
* Fix links
* Delete symbolic link and add links to html
* delete files
* Fix link
* [Feature] Add docker files (#67)
* add gpu and cpu dockerfile
* fix lint
* fix cpu docker and remove redundant
* use pip instead
* add build arg and readme
* fix grammar
* update readme
* add chinese doc for dockerfile and add docker build to build.md
* grammar
* refine dockerfiles
* add FAQs
* update Dpplcv_DIR for SDK building
* remove mmcls
* add sdk demos
* fix typo and lint
* update FAQs
* [Fix]fix check_env (#101)
* fix check_env
* update
* Replace convert_syncbatchnorm in mmseg (#93)
* replace convert_syncbatchnorm with revert_sync_batchnorm from mmcv
* change logger
* [Doc] Update FAQ for TensorRT (#96)
* update FAQ
* comment
* [Docs]: Update doc for openvino installation (#102)
* fix docs
* fix docs
* fix docs
* fix mmcv version
* fix docs
* rm blank line
* simplify non batch nms (#99)
* [Enhacement] Allow test.py to save evaluation results (#108)
* Add log file
* Delete debug code
* Rename logger
* resolve comments
* [Enhancement] Support mmocr v0.4+ (#115)
* support mmocr v0.4+
* 0.4.0 -> 0.4.1
* fix onnxruntime wrapper for gpu inference (#123)
* fix ncnn wrapper for ort-gpu
* resolve comment
* fix lint
* Fix typo (#132)
* lock mmcls version (#131)
* [Enhancement] upgrade isort in pre-commit config (#141)
* [Enhancement] upgrade isort in pre-commit config by refering to mmflow pr #87
* fix lint
* remove .isort.cfg and put its known_third_party to setup.cfg
* Fix ci for mmocr (#144)
* fix mmocr unittests
* remove useless
* lock mmdet maximum version to 2.20
* pip install -U numpy
* Fix capture_output (#125)
Co-authored-by: hanrui1sensetime <83800577+hanrui1sensetime@users.noreply.github.com>
Co-authored-by: Johannes L <tehkillerbee@users.noreply.github.com>
Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: VVsssssk <88368822+VVsssssk@users.noreply.github.com>
Co-authored-by: lvhan028 <lvhan_028@163.com>
Co-authored-by: AllentDan <41138331+AllentDan@users.noreply.github.com>
Co-authored-by: Yifan Zhou <singlezombie@163.com>
Co-authored-by: 杨培文 (Yang Peiwen) <915505626@qq.com>
Co-authored-by: Semyon Bevzyuk <semen.bevzuk@gmail.com>
* configs for all tasks
* use torchvision roi align
* remote unnecessary code
* fix ut
* fix ut
* export
* det dynamic
* det dynamic
* add ut
* fix ut
* add ut and docs
* fix ut
* skip torchscript ut if no ops available
* add torchscript option to build.md
* update benchmark and resolve comments
* resolve conflicts
* rename configs
* fix mrcnn cuda test
* remove useless
* add version requirements to docs and comments to codes
* enable empty image exporting for torchscript and accelerate ORT inference for MRCNN
* rebase
* update example for torchscript.md
* update FAQs for torchscript.md
* resolve comments
* only use torchvision roi_align for torchscript
* fix ut
* use torchvision roi align when pool model is avg
* resolve comments
Co-authored-by: grimoire <streetyao@live.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
Co-authored-by: hanrui1sensetime <83800577+hanrui1sensetime@users.noreply.github.com>
Co-authored-by: Johannes L <tehkillerbee@users.noreply.github.com>
Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: VVsssssk <88368822+VVsssssk@users.noreply.github.com>
Co-authored-by: lvhan028 <lvhan_028@163.com>
Co-authored-by: Yifan Zhou <singlezombie@163.com>
Co-authored-by: 杨培文 (Yang Peiwen) <915505626@qq.com>
Co-authored-by: Semyon Bevzyuk <semen.bevzuk@gmail.com>
* Update supported mmseg models (#181)
* fix ocrnet cascade decoder
* update mmseg support models
* update mmseg configs
* support emanet and icnet
* set max K of TopK for tensorrt
* update supported models for mmseg in docs
* add test for emamodule
* add configs and update docs
* Update docs
* update benchmark
* [Features]Support mmdet3d (#103)
* add mmdet3d code
* add code
* update code
* [log]This commit finish pointpillar export and evaluate on onnxruntime.The model is sample with nvidia repo model
* add tensorrt config
* fix config
* update
* support for tensorrt
* add config
* fix config`
* fix apis about torch2onnx
* update
* mmdet3d deploy version1.0
* map is ok
* fix code
* version1.0
* fix code
* fix visual
* fix bug
* tensorrt support success
* add docstring
* add docs
* fix docs
* fix comments
* fix comment
* fix comment
* fix openvino wrapper
* add unit test
* fix device about cpu
* fix comment
* fix show_result
* fix lint
* fix requirments
* remove ci about det3d
* fix ut
* add ut data
* support for new version pointpillars
* fix comment
* fix support_list
* fix comments
* fix config name
* [Enhancement] Additional arguments support for OpenVINO Model Optimizer (#178)
* Add mo args.
* [Docs]: update docs and argument descriptions (#196)
* bump version to v0.4.0
* update docs and argument descriptions
* revert version change
* fix unnecessary change of config for dynamic exportation (#199)
* fix mmcls get classes (#215)
* fix mmcls get classes
* resolve comment
* resolve comment
* Add ModelOptimizerOptions.
* Fix merge bugs.
* Update mmpose.md (#224)
* [Dostring]add example in apis docstring (#214)
* add example in apis docstring
* add backend example in docstring
* rm blank line
* Fixed get_mo_options_from_cfg args
* fix l2norm test
Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: Haofan Wang <frankmiracle@outlook.com>
Co-authored-by: VVsssssk <88368822+VVsssssk@users.noreply.github.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
* add-mmpose-codebase
* fix ci
* fix img_shape after TopDownAffine
* rename TopDown module -> XheadDecode & implement regression decode
* align keypoints_from_heatmap
* remove hardcode keypoint_head, need refactor, current only support topdown config
* add mmpose python api
* update mmpose-python code
* can't clip fake box
* fix rebase error
* fix rebase error
* link mspn decoder to base decoder
* fix ci
* compile with gcc7.5
* remove no use code
* fix
* fix prompt
* remove unnecessary cv::parallel_for_
* rewrite TopdownHeatmapMultiStageHead.inference_model
* add comment
* add more detail docstring why use _cs2xyxy in sdk backend
* fix Registry name
* remove no use param & add comment of output result
Co-authored-by: AllentDan <41138331+AllentDan@users.noreply.github.com>
Co-authored-by: grimoire <streetyao@live.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
Co-authored-by: hanrui1sensetime <83800577+hanrui1sensetime@users.noreply.github.com>
Co-authored-by: Johannes L <tehkillerbee@users.noreply.github.com>
Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: VVsssssk <88368822+VVsssssk@users.noreply.github.com>
Co-authored-by: lvhan028 <lvhan_028@163.com>
Co-authored-by: Yifan Zhou <singlezombie@163.com>
Co-authored-by: 杨培文 (Yang Peiwen) <915505626@qq.com>
Co-authored-by: Semyon Bevzyuk <semen.bevzuk@gmail.com>
Co-authored-by: Haofan Wang <frankmiracle@outlook.com>
* update faq about WinError 1455 (#297)
* update faq about WinError 1455
* Update faq.md
* Update faq.md
* fix ci
Co-authored-by: chenxin2 <chenxin2@sensetime.com>
* [Feature]Support centerpoint (#252)
* bump version to v0.4.0
* [Enhancement] Make rewriter more powerful (#150)
* Finish function tests
* lint
* resolve comments
* Fix tests
* docstring & fix
* Complement informations
* lint
* Add example
* Fix version
* Remove todo
Co-authored-by: RunningLeon <mnsheng@yeah.net>
* Torchscript support (#159)
* support torchscript
* add nms
* add torchscript configs and update deploy process and dump-info
* typescript -> torchscript
* add torchscript custom extension support
* add ts custom ops again
* support mmseg unet
* [WIP] add optimizer for torchscript (#119)
* add passes
* add python api
* Torchscript optimizer python api (#121)
* add passes
* add python api
* use python api instead of executable
* Merge Master, update optimizer (#151)
* [Feature] add yolox ncnn (#29)
* add yolox ncnn
* add ncnn android performance of yolox
* add ut
* fix lint
* fix None bugs for ncnn
* test codecov
* test codecov
* add device
* fix yapf
* remove if-else for img shape
* use channelshuffle optimize
* change benchmark after channelshuffle
* fix yapf
* fix yapf
* fuse continuous reshape
* fix static shape deploy
* fix code
* drop pad
* only static shape
* fix static
* fix docstring
* Added mask overlay to output image, changed fprintf info messages to … (#55)
* Added mask overlay to output image, changed fprintf info messages to stdout
* Improved box filtering (filter area/score), make sure roi coordinates stay within bounds
* clang-format
* Support UNet in mmseg (#77)
* Repeatdataset in train has no CLASSES & PALETTE
* update result for unet
* update docstring for mmdet
* remove ppl for unet in docs
* fix ort wrap about input type (#81)
* Fix memleak (#86)
* delete []
* fix build error when enble MMDEPLOY_ACTIVE_LEVEL
* fix lint
* [Doc] Nano benchmark and tutorial (#71)
* add cls benchmark
* add nano zh-cn benchmark and en tutorial
* add device row
* add doc path to index.rst
* fix typo
* [Fix] fix missing deploy_core (#80)
* fix missing deploy_core
* mv flag to demo
* target link
* [Docs] Fix links in Chinese doc (#84)
* Fix docs in Chinese link
* Fix links
* Delete symbolic link and add links to html
* delete files
* Fix link
* [Feature] Add docker files (#67)
* add gpu and cpu dockerfile
* fix lint
* fix cpu docker and remove redundant
* use pip instead
* add build arg and readme
* fix grammar
* update readme
* add chinese doc for dockerfile and add docker build to build.md
* grammar
* refine dockerfiles
* add FAQs
* update Dpplcv_DIR for SDK building
* remove mmcls
* add sdk demos
* fix typo and lint
* update FAQs
* [Fix]fix check_env (#101)
* fix check_env
* update
* Replace convert_syncbatchnorm in mmseg (#93)
* replace convert_syncbatchnorm with revert_sync_batchnorm from mmcv
* change logger
* [Doc] Update FAQ for TensorRT (#96)
* update FAQ
* comment
* [Docs]: Update doc for openvino installation (#102)
* fix docs
* fix docs
* fix docs
* fix mmcv version
* fix docs
* rm blank line
* simplify non batch nms (#99)
* [Enhacement] Allow test.py to save evaluation results (#108)
* Add log file
* Delete debug code
* Rename logger
* resolve comments
* [Enhancement] Support mmocr v0.4+ (#115)
* support mmocr v0.4+
* 0.4.0 -> 0.4.1
* fix onnxruntime wrapper for gpu inference (#123)
* fix ncnn wrapper for ort-gpu
* resolve comment
* fix lint
* Fix typo (#132)
* lock mmcls version (#131)
* [Enhancement] upgrade isort in pre-commit config (#141)
* [Enhancement] upgrade isort in pre-commit config by refering to mmflow pr #87
* fix lint
* remove .isort.cfg and put its known_third_party to setup.cfg
* Fix ci for mmocr (#144)
* fix mmocr unittests
* remove useless
* lock mmdet maximum version to 2.20
* pip install -U numpy
* Fix capture_output (#125)
Co-authored-by: hanrui1sensetime <83800577+hanrui1sensetime@users.noreply.github.com>
Co-authored-by: Johannes L <tehkillerbee@users.noreply.github.com>
Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: VVsssssk <88368822+VVsssssk@users.noreply.github.com>
Co-authored-by: lvhan028 <lvhan_028@163.com>
Co-authored-by: AllentDan <41138331+AllentDan@users.noreply.github.com>
Co-authored-by: Yifan Zhou <singlezombie@163.com>
Co-authored-by: 杨培文 (Yang Peiwen) <915505626@qq.com>
Co-authored-by: Semyon Bevzyuk <semen.bevzuk@gmail.com>
* configs for all tasks
* use torchvision roi align
* remote unnecessary code
* fix ut
* fix ut
* export
* det dynamic
* det dynamic
* add ut
* fix ut
* add ut and docs
* fix ut
* skip torchscript ut if no ops available
* add torchscript option to build.md
* update benchmark and resolve comments
* resolve conflicts
* rename configs
* fix mrcnn cuda test
* remove useless
* add version requirements to docs and comments to codes
* enable empty image exporting for torchscript and accelerate ORT inference for MRCNN
* rebase
* update example for torchscript.md
* update FAQs for torchscript.md
* resolve comments
* only use torchvision roi_align for torchscript
* fix ut
* use torchvision roi align when pool model is avg
* resolve comments
Co-authored-by: grimoire <streetyao@live.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
Co-authored-by: hanrui1sensetime <83800577+hanrui1sensetime@users.noreply.github.com>
Co-authored-by: Johannes L <tehkillerbee@users.noreply.github.com>
Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: VVsssssk <88368822+VVsssssk@users.noreply.github.com>
Co-authored-by: lvhan028 <lvhan_028@163.com>
Co-authored-by: Yifan Zhou <singlezombie@163.com>
Co-authored-by: 杨培文 (Yang Peiwen) <915505626@qq.com>
Co-authored-by: Semyon Bevzyuk <semen.bevzuk@gmail.com>
* Update supported mmseg models (#181)
* fix ocrnet cascade decoder
* update mmseg support models
* update mmseg configs
* support emanet and icnet
* set max K of TopK for tensorrt
* update supported models for mmseg in docs
* add test for emamodule
* add configs and update docs
* Update docs
* update benchmark
* [Features]Support mmdet3d (#103)
* add mmdet3d code
* add code
* update code
* [log]This commit finish pointpillar export and evaluate on onnxruntime.The model is sample with nvidia repo model
* add tensorrt config
* fix config
* update
* support for tensorrt
* add config
* fix config`
* fix apis about torch2onnx
* update
* mmdet3d deploy version1.0
* map is ok
* fix code
* version1.0
* fix code
* fix visual
* fix bug
* tensorrt support success
* add docstring
* add docs
* fix docs
* fix comments
* fix comment
* fix comment
* fix openvino wrapper
* add unit test
* fix device about cpu
* fix comment
* fix show_result
* fix lint
* fix requirments
* remove ci about det3d
* fix ut
* add ut data
* support for new version pointpillars
* fix comment
* fix support_list
* fix comments
* fix config name
* [Enhancement] Update pad logic in detection heads (#168)
* pad with register
* fix lint
Co-authored-by: AllentDan <dongchunyu@sensetime.com>
* [Enhancement] Additional arguments support for OpenVINO Model Optimizer (#178)
* Add mo args.
* [Docs]: update docs and argument descriptions (#196)
* bump version to v0.4.0
* update docs and argument descriptions
* revert version change
* fix unnecessary change of config for dynamic exportation (#199)
* fix mmcls get classes (#215)
* fix mmcls get classes
* resolve comment
* resolve comment
* Add ModelOptimizerOptions.
* Fix merge bugs.
* Update mmpose.md (#224)
* [Dostring]add example in apis docstring (#214)
* add example in apis docstring
* add backend example in docstring
* rm blank line
* Fixed get_mo_options_from_cfg args
* fix l2norm test
Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: Haofan Wang <frankmiracle@outlook.com>
Co-authored-by: VVsssssk <88368822+VVsssssk@users.noreply.github.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
* [Enhancement] Switch to statically typed Value::Any (#209)
* replace std::any with StaticAny
* fix __compare_typeid
* remove fallback id support
* constraint on traits::TypeId<T>::value
* fix includes
* support for centerpoint
* [Enhancement] TensorRT DCN support (#205)
* add tensorrt dcn support
* fix lint
* add docstring and dcn model support
* add centerpoint ut and docs
* add config and fix input rank
* fix merge error
* fix a bug
* fix comment
* [Doc] update benchmark add supported-model-list (#286)
* update benchmark add supported-model-list
* fix lint
* fix lint
* loc mmocr maximum version
* fix ut
Co-authored-by: maningsheng <mnsheng@yeah.net>
Co-authored-by: Yifan Zhou <singlezombie@163.com>
Co-authored-by: AllentDan <41138331+AllentDan@users.noreply.github.com>
Co-authored-by: grimoire <streetyao@live.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
Co-authored-by: hanrui1sensetime <83800577+hanrui1sensetime@users.noreply.github.com>
Co-authored-by: Johannes L <tehkillerbee@users.noreply.github.com>
Co-authored-by: lvhan028 <lvhan_028@163.com>
Co-authored-by: 杨培文 (Yang Peiwen) <915505626@qq.com>
Co-authored-by: Semyon Bevzyuk <semen.bevzuk@gmail.com>
Co-authored-by: AllentDan <dongchunyu@sensetime.com>
Co-authored-by: Haofan Wang <frankmiracle@outlook.com>
Co-authored-by: lzhangzz <lzhang329@gmail.com>
Co-authored-by: maningsheng <mnsheng@yeah.net>
Co-authored-by: Yifan Zhou <singlezombie@163.com>
Co-authored-by: AllentDan <41138331+AllentDan@users.noreply.github.com>
Co-authored-by: grimoire <streetyao@live.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
Co-authored-by: hanrui1sensetime <83800577+hanrui1sensetime@users.noreply.github.com>
Co-authored-by: Johannes L <tehkillerbee@users.noreply.github.com>
Co-authored-by: VVsssssk <88368822+VVsssssk@users.noreply.github.com>
Co-authored-by: 杨培文 (Yang Peiwen) <915505626@qq.com>
Co-authored-by: Semyon Bevzyuk <semen.bevzuk@gmail.com>
Co-authored-by: AllentDan <dongchunyu@sensetime.com>
Co-authored-by: Haofan Wang <frankmiracle@outlook.com>
Co-authored-by: lzhangzz <lzhang329@gmail.com>
Co-authored-by: Chen Xin <xinchen.tju@gmail.com>
Co-authored-by: chenxin2 <chenxin2@sensetime.com>
2022-04-01 18:14:23 +08:00
|
|
|
@pytest.mark.parametrize('backend', [TEST_TENSORRT])
|
|
|
|
@pytest.mark.parametrize('in_channels,out_channels,stride,padding,'
|
|
|
|
'dilation,groups,deform_groups,kernel_size',
|
|
|
|
[(3, 64, 1, 0, 1, 1, 1, 3),
|
|
|
|
(1, 32, 3, 2, 1, 1, 1, 3)])
|
|
|
|
def test_deform_conv(backend,
|
|
|
|
in_channels,
|
|
|
|
out_channels,
|
|
|
|
stride,
|
|
|
|
padding,
|
|
|
|
dilation,
|
|
|
|
groups,
|
|
|
|
deform_groups,
|
|
|
|
kernel_size,
|
|
|
|
input_list=None,
|
|
|
|
save_dir=None):
|
|
|
|
backend.check_env()
|
|
|
|
|
|
|
|
if input_list is None:
|
|
|
|
input = torch.rand(
|
|
|
|
1, in_channels, 28, 28, requires_grad=False) # (n, c, h, w)
|
|
|
|
else:
|
|
|
|
input = torch.tensor(input_list[0])
|
|
|
|
conv_offset = nn.Conv2d(
|
|
|
|
in_channels=in_channels,
|
|
|
|
out_channels=deform_groups * 2 * kernel_size * kernel_size,
|
|
|
|
kernel_size=kernel_size,
|
|
|
|
stride=stride,
|
|
|
|
padding=padding,
|
|
|
|
dilation=dilation,
|
|
|
|
bias=True)
|
|
|
|
offset = conv_offset(input)
|
|
|
|
|
|
|
|
from mmcv.ops import DeformConv2d
|
|
|
|
model = DeformConv2d(in_channels, out_channels, kernel_size, stride,
|
|
|
|
padding, dilation, groups, deform_groups).eval()
|
|
|
|
|
|
|
|
with RewriterContext(cfg={}, backend=backend.backend_name, opset=11):
|
|
|
|
backend.run_and_validate(
|
|
|
|
model, [input, offset],
|
|
|
|
'deform_conv',
|
|
|
|
input_names=['input', 'offset'],
|
|
|
|
output_names=['output'],
|
|
|
|
save_dir=save_dir)
|
|
|
|
|
|
|
|
|
2021-09-27 11:16:23 +08:00
|
|
|
@pytest.mark.parametrize('backend', [TEST_TENSORRT])
|
|
|
|
@pytest.mark.parametrize('dynamic_export', [True, False])
|
|
|
|
@pytest.mark.parametrize('fp16_mode', [True, False])
|
|
|
|
@pytest.mark.parametrize('n, c, h, w', [(2, 3, 10, 10)])
|
|
|
|
def test_instance_norm(backend,
|
|
|
|
dynamic_export,
|
|
|
|
fp16_mode,
|
|
|
|
n,
|
|
|
|
c,
|
|
|
|
h,
|
|
|
|
w,
|
|
|
|
input_list=None,
|
|
|
|
save_dir=None):
|
|
|
|
backend.check_env()
|
|
|
|
|
|
|
|
if input_list is None:
|
|
|
|
input = torch.randn(n, c, h, w)
|
|
|
|
if dynamic_export:
|
|
|
|
dynamic_axes = {
|
|
|
|
'input': {
|
|
|
|
0: 'n',
|
|
|
|
2: 'h',
|
|
|
|
3: 'w',
|
|
|
|
},
|
|
|
|
'output': {
|
|
|
|
0: 'n',
|
|
|
|
2: 'h',
|
|
|
|
3: 'w',
|
|
|
|
},
|
|
|
|
}
|
|
|
|
else:
|
|
|
|
dynamic_axes = None
|
|
|
|
|
|
|
|
norm = nn.InstanceNorm2d(c, affine=True)
|
|
|
|
wrapped_model = WrapFunction(norm).eval()
|
|
|
|
|
2021-10-26 10:30:14 +08:00
|
|
|
with RewriterContext(cfg={}, backend=backend.backend_name, opset=11):
|
|
|
|
backend.run_and_validate(
|
|
|
|
wrapped_model, [input],
|
|
|
|
'instance_norm',
|
|
|
|
input_names=['input'],
|
|
|
|
dynamic_axes=dynamic_axes,
|
|
|
|
output_names=['output'],
|
|
|
|
save_dir=save_dir)
|
2021-09-28 14:20:04 +08:00
|
|
|
|
|
|
|
|
2021-10-09 10:45:03 +08:00
|
|
|
@pytest.mark.parametrize('backend', [TEST_TENSORRT])
|
|
|
|
@pytest.mark.parametrize('num_classes,pre_topk,after_topk,iou_threshold,'
|
|
|
|
'score_threshold,background_label_id',
|
|
|
|
[(5, 6, 3, 0.7, 0.1, -1)])
|
|
|
|
def test_batched_nms(backend,
|
|
|
|
num_classes,
|
|
|
|
pre_topk,
|
|
|
|
after_topk,
|
|
|
|
iou_threshold,
|
|
|
|
score_threshold,
|
|
|
|
background_label_id,
|
|
|
|
input_list=None,
|
|
|
|
save_dir=None):
|
|
|
|
backend.check_env()
|
|
|
|
|
|
|
|
if input_list is None:
|
|
|
|
nms_boxes = torch.tensor([[[291.1746, 316.2263, 343.5029, 347.7312],
|
|
|
|
[288.4846, 315.0447, 343.7267, 346.5630],
|
|
|
|
[288.5307, 318.1989, 341.6425, 349.7222],
|
|
|
|
[918.9102, 83.7463, 933.3920, 164.9041],
|
|
|
|
[895.5786, 78.2361, 907.8049, 172.0883],
|
|
|
|
[292.5816, 316.5563, 340.3462, 352.9989],
|
|
|
|
[609.4592, 83.5447, 631.2532, 144.0749],
|
|
|
|
[917.7308, 85.5870, 933.2839, 168.4530],
|
|
|
|
[895.5138, 79.3596, 908.2865, 171.0418],
|
|
|
|
[291.4747, 318.6987, 347.1208, 349.5754]]])
|
|
|
|
scores = torch.tensor([[[0.9577, 0.9745, 0.3030, 0.6589, 0.2742],
|
|
|
|
[0.1618, 0.7963, 0.5124, 0.6964, 0.6850],
|
|
|
|
[0.8425, 0.4843, 0.9489, 0.8068, 0.7340],
|
|
|
|
[0.7337, 0.4340, 0.9923, 0.0704, 0.4506],
|
|
|
|
[0.3090, 0.5606, 0.6939, 0.3764, 0.6920],
|
|
|
|
[0.0044, 0.7986, 0.2221, 0.2782, 0.4378],
|
|
|
|
[0.7293, 0.2735, 0.8381, 0.0264, 0.6278],
|
|
|
|
[0.7144, 0.1066, 0.4125, 0.4041, 0.8819],
|
|
|
|
[0.4963, 0.7891, 0.6908, 0.1499, 0.5584],
|
|
|
|
[0.4385, 0.6035, 0.0508, 0.0662, 0.5938]]])
|
|
|
|
else:
|
|
|
|
nms_boxes = torch.tensor(input_list[0], dtype=torch.float32)
|
|
|
|
scores = torch.tensor(input_list[1], dtype=torch.float32)
|
|
|
|
|
2021-11-25 17:06:08 +08:00
|
|
|
from mmdeploy.codebase.mmdet.core.post_processing import _multiclass_nms
|
2021-10-09 10:45:03 +08:00
|
|
|
expected_result = _multiclass_nms(
|
|
|
|
nms_boxes,
|
|
|
|
scores,
|
|
|
|
iou_threshold=iou_threshold,
|
|
|
|
score_threshold=score_threshold,
|
|
|
|
pre_top_k=pre_topk + 1,
|
|
|
|
keep_top_k=after_topk + 1)
|
2022-01-07 13:35:49 +08:00
|
|
|
expected_result = (expected_result[0][:,
|
|
|
|
0:-1, :], expected_result[1][:,
|
|
|
|
0:-1])
|
2021-10-09 10:45:03 +08:00
|
|
|
|
|
|
|
boxes = nms_boxes.unsqueeze(2).tile(num_classes, 1)
|
|
|
|
|
|
|
|
from mmdeploy.mmcv.ops.nms import TRTBatchedNMSop
|
|
|
|
batched_nms = TRTBatchedNMSop.apply
|
|
|
|
|
|
|
|
def wrapped_function(boxes, scores):
|
|
|
|
return batched_nms(boxes, scores, num_classes, pre_topk, after_topk,
|
|
|
|
iou_threshold, score_threshold, background_label_id)
|
|
|
|
|
|
|
|
wrapped_model = WrapFunction(wrapped_function)
|
|
|
|
|
2021-10-26 10:30:14 +08:00
|
|
|
with RewriterContext(cfg={}, backend=backend.backend_name, opset=11):
|
|
|
|
backend.run_and_validate(
|
|
|
|
wrapped_model, [boxes, scores],
|
|
|
|
'batched_nms',
|
|
|
|
input_names=['boxes', 'scores'],
|
|
|
|
output_names=['batched_nms_bboxes', 'inds'],
|
|
|
|
expected_result=expected_result,
|
|
|
|
save_dir=save_dir)
|
2021-10-09 10:45:03 +08:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('backend', [TEST_TENSORRT])
|
2022-03-14 10:26:27 +08:00
|
|
|
@pytest.mark.parametrize(
|
|
|
|
'out_size, pool_mode, sampling_ratio,roi_scale_factor,'
|
|
|
|
' finest_scale,featmap_strides, aligned',
|
|
|
|
[(tuple([2, 2]), 0, 2, 1.0, 2, list([2.0, 4.0]), 1),
|
|
|
|
(tuple([2, 2]), 1, 2, 1.0, 2, list([2.0, 4.0]), 1)])
|
2021-10-09 10:45:03 +08:00
|
|
|
def test_multi_level_roi_align(backend,
|
|
|
|
out_size,
|
2022-03-14 10:26:27 +08:00
|
|
|
pool_mode,
|
2021-10-09 10:45:03 +08:00
|
|
|
sampling_ratio,
|
|
|
|
roi_scale_factor,
|
|
|
|
finest_scale,
|
|
|
|
featmap_strides,
|
|
|
|
aligned,
|
|
|
|
input_list=None,
|
|
|
|
save_dir=None):
|
|
|
|
backend.check_env()
|
|
|
|
|
|
|
|
if input_list is None:
|
|
|
|
input = [
|
|
|
|
torch.tensor([[[[0.3014, 0.7334, 0.6502, 0.1689],
|
|
|
|
[0.3031, 0.3735, 0.6032, 0.1644],
|
|
|
|
[0.0393, 0.4415, 0.3858, 0.2657],
|
|
|
|
[0.5766, 0.0211, 0.6384, 0.0016]],
|
|
|
|
[[0.0811, 0.6255, 0.0247, 0.3471],
|
|
|
|
[0.1390, 0.9298, 0.6178, 0.6636],
|
|
|
|
[0.2243, 0.2024, 0.2366, 0.3660],
|
|
|
|
[0.1050, 0.2301, 0.7489, 0.7506]],
|
|
|
|
[[0.3868, 0.1706, 0.2390, 0.8494],
|
|
|
|
[0.2643, 0.9347, 0.0412, 0.5790],
|
|
|
|
[0.6202, 0.0682, 0.0390, 0.5296],
|
|
|
|
[0.5383, 0.1221, 0.6344, 0.1514]]]]),
|
|
|
|
torch.tensor([[[[0.1939, 0.9983, 0.4031, 0.2712],
|
|
|
|
[0.7929, 0.1504, 0.0946, 0.5030],
|
|
|
|
[0.1421, 0.7908, 0.9595, 0.4198],
|
|
|
|
[0.6880, 0.4722, 0.9896, 0.2266]],
|
|
|
|
[[0.0778, 0.4232, 0.0736, 0.0168],
|
|
|
|
[0.2887, 0.8461, 0.1140, 0.9582],
|
|
|
|
[0.5169, 0.4924, 0.8275, 0.5530],
|
|
|
|
[0.8961, 0.7466, 0.5976, 0.3760]],
|
|
|
|
[[0.1542, 0.5028, 0.8412, 0.6617],
|
|
|
|
[0.3751, 0.2798, 0.3835, 0.8640],
|
|
|
|
[0.5821, 0.6588, 0.1324, 0.7619],
|
|
|
|
[0.9178, 0.7282, 0.0291, 0.3028]]]])
|
|
|
|
]
|
|
|
|
rois = torch.tensor([[0., 0., 0., 4., 4.]])
|
2022-03-14 10:26:27 +08:00
|
|
|
if pool_mode == 1:
|
|
|
|
expected_result = torch.tensor([[[[0.1939, 0.3950],
|
|
|
|
[0.3437, 0.4543]],
|
|
|
|
[[0.0778, 0.1641],
|
|
|
|
[0.1305, 0.2301]],
|
|
|
|
[[0.1542, 0.2413],
|
|
|
|
[0.2094, 0.2688]]]])
|
|
|
|
else:
|
|
|
|
expected_result = torch.tensor([[[[0.1939, 0.4956],
|
|
|
|
[0.4185, 0.5167]],
|
|
|
|
[[0.0778, 0.2073],
|
|
|
|
[0.1569, 0.3162]],
|
|
|
|
[[0.1542, 0.2849],
|
|
|
|
[0.2370, 0.3053]]]])
|
|
|
|
|
2021-10-09 10:45:03 +08:00
|
|
|
else:
|
|
|
|
input = input_list[0]
|
|
|
|
rois = input_list[1]
|
|
|
|
expected_result = input_list[2]
|
|
|
|
input_name = [('input_' + str(i)) for i in range(len(featmap_strides))]
|
|
|
|
input_name.insert(0, 'rois')
|
|
|
|
|
|
|
|
inputs = [
|
|
|
|
onnx.helper.make_tensor_value_info(
|
|
|
|
input_name[i + 1], onnx.TensorProto.FLOAT, shape=input[i].shape)
|
|
|
|
for i in range(len(input_name) - 1)
|
|
|
|
]
|
|
|
|
inputs.append(
|
|
|
|
onnx.helper.make_tensor_value_info(
|
|
|
|
'rois', onnx.TensorProto.FLOAT, shape=rois.shape))
|
|
|
|
outputs = [
|
|
|
|
onnx.helper.make_tensor_value_info(
|
|
|
|
'bbox_feats', onnx.TensorProto.FLOAT, shape=expected_result.shape)
|
|
|
|
]
|
|
|
|
node = onnx.helper.make_node(
|
|
|
|
'MMCVMultiLevelRoiAlign',
|
|
|
|
input_name, ['bbox_feats'],
|
|
|
|
'MMCVMultiLevelRoiAlign_0',
|
|
|
|
None,
|
2021-12-08 15:06:41 +08:00
|
|
|
'mmdeploy',
|
2022-03-14 10:26:27 +08:00
|
|
|
pool_mode=pool_mode,
|
2021-10-09 10:45:03 +08:00
|
|
|
aligned=aligned,
|
|
|
|
featmap_strides=featmap_strides,
|
|
|
|
finest_scale=finest_scale,
|
|
|
|
output_height=out_size[0],
|
|
|
|
output_width=out_size[1],
|
|
|
|
roi_scale_factor=roi_scale_factor,
|
|
|
|
sampling_ratio=sampling_ratio)
|
|
|
|
graph = onnx.helper.make_graph([node], 'torch-jit-export', inputs, outputs)
|
|
|
|
onnx_model = onnx.helper.make_model(
|
|
|
|
graph, producer_name='pytorch', producer_version='1.8')
|
|
|
|
onnx_model.opset_import[0].version = 11
|
|
|
|
onnx_model.opset_import.append(
|
2021-12-08 15:06:41 +08:00
|
|
|
onnx.onnx_ml_pb2.OperatorSetIdProto(domain='mmdeploy', version=1))
|
2021-10-09 10:45:03 +08:00
|
|
|
|
|
|
|
backend.run_and_validate(
|
|
|
|
onnx_model, [rois, *input],
|
|
|
|
'multi_level_roi_align',
|
|
|
|
input_names=input_name,
|
|
|
|
output_names=['bbox_feats'],
|
|
|
|
expected_result=expected_result,
|
|
|
|
save_dir=save_dir)
|
|
|
|
|
|
|
|
|
2021-09-28 14:20:04 +08:00
|
|
|
@pytest.mark.parametrize('backend', [TEST_NCNN])
|
|
|
|
@pytest.mark.parametrize('k', [1, 3, 5])
|
|
|
|
@pytest.mark.parametrize('dim', [1, 2, 3])
|
|
|
|
@pytest.mark.parametrize('largest', [True, False])
|
|
|
|
@pytest.mark.parametrize('sorted', [True, False])
|
|
|
|
def test_topk(backend,
|
|
|
|
k,
|
|
|
|
dim,
|
|
|
|
largest,
|
|
|
|
sorted,
|
|
|
|
input_list=None,
|
|
|
|
save_dir=None):
|
|
|
|
backend.check_env()
|
|
|
|
|
2021-09-29 15:02:58 +08:00
|
|
|
if input_list is None:
|
2021-09-28 14:20:04 +08:00
|
|
|
input = torch.rand(1, 8, 12, 17)
|
2021-09-29 15:02:58 +08:00
|
|
|
else:
|
|
|
|
input = input_list[0]
|
2021-09-28 14:20:04 +08:00
|
|
|
assert input.shape[0] == 1, (f'ncnn batch must be 1, \
|
2021-10-12 14:24:56 +08:00
|
|
|
but got {input.shape[0]}')
|
2021-09-28 14:20:04 +08:00
|
|
|
|
2021-10-12 14:24:56 +08:00
|
|
|
def topk_function(inputs):
|
2021-09-28 14:20:04 +08:00
|
|
|
return torch.Tensor.topk(inputs, k, dim, largest, sorted)
|
|
|
|
|
2021-10-12 14:24:56 +08:00
|
|
|
wrapped_model = WrapFunction(topk_function)
|
2021-09-28 14:20:04 +08:00
|
|
|
|
|
|
|
# when the 'sorted' attribute is False, pytorch will return
|
|
|
|
# a hard to expect result, which only features that the topk
|
|
|
|
# number is right. So the Topk unittest only check whether the
|
|
|
|
# topk elements are right, all the possible order will be accepted.
|
2021-10-26 10:30:14 +08:00
|
|
|
with RewriterContext(cfg={}, backend=backend.backend_name, opset=11):
|
|
|
|
if not sorted:
|
|
|
|
backend.run_and_validate(
|
|
|
|
wrapped_model, [input.float()],
|
|
|
|
'topk' + f'_no_sorted_dim_{dim}',
|
|
|
|
input_names=['inputs'],
|
|
|
|
output_names=['data', 'index'],
|
|
|
|
save_dir=save_dir)
|
|
|
|
else:
|
|
|
|
backend.run_and_validate(
|
|
|
|
wrapped_model, [input.float()],
|
|
|
|
'topk',
|
|
|
|
input_names=['inputs'],
|
|
|
|
output_names=['data', 'index'],
|
|
|
|
save_dir=save_dir)
|
2021-09-29 15:02:58 +08:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('backend', [TEST_NCNN])
|
|
|
|
@pytest.mark.parametrize('dim, n, c, h, w', [(1, 1, 1, 1, 8), (2, 1, 1, 5, 7),
|
|
|
|
(3, 1, 3, 10, 15)])
|
|
|
|
def test_shape(backend,
|
|
|
|
dim,
|
|
|
|
n,
|
|
|
|
c,
|
|
|
|
h,
|
|
|
|
w,
|
|
|
|
input_names=['input'],
|
|
|
|
output_names=['output'],
|
|
|
|
tolerate_small_mismatch=False,
|
|
|
|
input_list=None,
|
|
|
|
save_dir=None):
|
|
|
|
backend.check_env()
|
|
|
|
|
|
|
|
orig_shape = (n, c, h, w)[-dim - 1:]
|
|
|
|
if input_list is None:
|
|
|
|
input = torch.rand(orig_shape)
|
|
|
|
else:
|
|
|
|
input = input_list[0]
|
|
|
|
assert input.dim() == dim + 1, 'input.dim() must equal to dim + 1'
|
|
|
|
assert tuple(input.shape) == orig_shape, 'input.shape must the \
|
|
|
|
same as orig_shape'
|
|
|
|
|
|
|
|
assert input.shape[0] == 1, (f'ncnn batch must be 1, \
|
2021-10-12 14:24:56 +08:00
|
|
|
but got {input.shape[0]}')
|
2021-09-29 15:02:58 +08:00
|
|
|
|
|
|
|
shape_node = make_node('Shape', input_names, output_names)
|
|
|
|
assert len(input_names) == 1, 'length of input_names must be 1'
|
|
|
|
assert len(output_names) == 1, 'length of output_names must be 1'
|
|
|
|
shape_graph = make_graph([shape_node], 'shape_graph', [
|
|
|
|
make_tensor_value_info(input_names[0], onnx.TensorProto.FLOAT,
|
|
|
|
orig_shape)
|
|
|
|
], [
|
|
|
|
make_tensor_value_info(output_names[0], onnx.TensorProto.FLOAT,
|
|
|
|
(dim + 1, ))
|
|
|
|
])
|
|
|
|
shape_model = make_model(shape_graph)
|
|
|
|
|
2021-10-26 10:30:14 +08:00
|
|
|
with RewriterContext(cfg={}, backend=backend.backend_name, opset=11):
|
|
|
|
ncnn_model = backend.onnx2ncnn(shape_model, 'shape', output_names,
|
|
|
|
save_dir)
|
2021-09-29 15:02:58 +08:00
|
|
|
|
|
|
|
# ncnn mat has implicit batch for mat, the ncnn_output is a mat,
|
|
|
|
# so the ncnn_outputs has 2 dimensions, not 1.
|
|
|
|
model_outputs = [torch.tensor(orig_shape).unsqueeze(0).float()]
|
|
|
|
ncnn_outputs = ncnn_model(dict(zip(input_names, [input])))
|
|
|
|
ncnn_outputs = [ncnn_outputs[name] for name in output_names]
|
|
|
|
assert_allclose(model_outputs, ncnn_outputs, tolerate_small_mismatch)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('backend', [TEST_NCNN])
|
|
|
|
@pytest.mark.parametrize('dim, n, c, h, w', [(1, 1, 1, 1, 8), (2, 1, 1, 5, 7),
|
|
|
|
(3, 1, 3, 10, 15)])
|
|
|
|
@pytest.mark.parametrize('val', [0., 1., -3, 4.25])
|
|
|
|
def test_constantofshape(backend,
|
|
|
|
dim,
|
|
|
|
n,
|
|
|
|
c,
|
|
|
|
h,
|
|
|
|
w,
|
|
|
|
val,
|
|
|
|
input_names=['input'],
|
|
|
|
output_names=['output'],
|
|
|
|
tolerate_small_mismatch=False,
|
|
|
|
input_list=None,
|
|
|
|
save_dir=None):
|
|
|
|
backend.check_env()
|
|
|
|
if input_list is None:
|
|
|
|
input = torch.tensor((n, c, h, w)[-dim - 1:]).unsqueeze(0)
|
|
|
|
else:
|
|
|
|
input = input_list[0]
|
|
|
|
assert input.dim() == dim + 1, 'input.dim() must equal to dim + 1'
|
|
|
|
assert tuple(input.shape) == (n, c, h,
|
|
|
|
w)[-dim - 1:], 'input.shape must the \
|
|
|
|
same as orig_shape'
|
|
|
|
|
|
|
|
assert input.shape[0] == 1, (f'ncnn input batch must be 1, \
|
|
|
|
got {input.shape[0]}')
|
|
|
|
assert input[0][0] == 1, (f'ncnn output mat batch must be 1, \
|
|
|
|
got {input[0][0]}')
|
|
|
|
|
|
|
|
constantofshape_node = make_node(
|
|
|
|
'ConstantOfShape', input_names, output_names, value=float(val))
|
|
|
|
assert len(input_names) == 1, 'length of input_names must be 1'
|
|
|
|
assert len(output_names) == 1, 'length of output_names must be 1'
|
|
|
|
constantofshape_graph = make_graph(
|
|
|
|
[constantofshape_node], 'constantofshape_graph', [
|
|
|
|
make_tensor_value_info(input_names[0], onnx.TensorProto.FLOAT,
|
|
|
|
input.shape)
|
|
|
|
], [
|
|
|
|
make_tensor_value_info(output_names[0], onnx.TensorProto.FLOAT,
|
|
|
|
torch.Size(input[0]))
|
|
|
|
])
|
|
|
|
constantofshape_model = make_model(constantofshape_graph)
|
2021-10-26 10:30:14 +08:00
|
|
|
with RewriterContext(cfg={}, backend=backend.backend_name, opset=11):
|
|
|
|
ncnn_model = backend.onnx2ncnn(constantofshape_model,
|
|
|
|
'constantofshape', output_names,
|
|
|
|
save_dir)
|
2021-09-29 15:02:58 +08:00
|
|
|
|
|
|
|
# ncnn mat has implicit batch for mat, the ncnn_output is a mat,
|
|
|
|
# so the ncnn_outputs has 2 dimensions, not 1.
|
|
|
|
model_outputs = [torch.fill_(torch.rand(tuple(input[0])), val)]
|
|
|
|
ncnn_outputs = ncnn_model(dict(zip(input_names, [input.float()])))
|
|
|
|
ncnn_outputs = [ncnn_outputs[name] for name in output_names]
|
|
|
|
assert_allclose(model_outputs, ncnn_outputs, tolerate_small_mismatch)
|
2021-10-09 11:42:32 +08:00
|
|
|
|
|
|
|
|
2021-10-09 14:06:49 +08:00
|
|
|
@pytest.mark.parametrize('backend', [TEST_NCNN])
|
|
|
|
@pytest.mark.parametrize('axis, data_dims, indice_dims', [(0, 1, 1), (0, 2, 1),
|
|
|
|
(1, 2, 1), (0, 3, 1),
|
|
|
|
(1, 3, 1),
|
|
|
|
(2, 3, 1)])
|
|
|
|
def test_gather(backend,
|
|
|
|
axis,
|
|
|
|
data_dims,
|
|
|
|
indice_dims,
|
|
|
|
input_names=['input', 'indices'],
|
|
|
|
output_names=['output'],
|
|
|
|
tolerate_small_mismatch=False,
|
|
|
|
input_list=None,
|
|
|
|
save_dir=None):
|
|
|
|
backend.check_env()
|
|
|
|
|
|
|
|
if input_list is None:
|
|
|
|
# the real data dims is data_dims + 1
|
|
|
|
data = torch.rand((8, 12, 17)[-data_dims:]).unsqueeze(0)
|
|
|
|
indice = torch.randint(0, 8, (3, 4, 5)[-indice_dims:]).unsqueeze(0)
|
|
|
|
else:
|
|
|
|
data = input_list[0]
|
|
|
|
indice = input_list[1]
|
|
|
|
assert data.shape[0] == 1, (f'ncnn batch must be 1, \
|
|
|
|
but got {data.shape[0]}')
|
|
|
|
assert indice.shape[0] == 1, (f'ncnn batch must be 1, \
|
|
|
|
but got {indice.shape[0]}')
|
|
|
|
|
|
|
|
gather_node = make_node('Gather', input_names, output_names, axis=axis + 1)
|
|
|
|
gather_graph = make_graph([gather_node], 'gather_graph', [
|
|
|
|
make_tensor_value_info(input_names[0], onnx.TensorProto.FLOAT, None),
|
|
|
|
make_tensor_value_info(input_names[1], onnx.TensorProto.INT64, None)
|
|
|
|
], [make_tensor_value_info(output_names[0], onnx.TensorProto.FLOAT, None)])
|
|
|
|
gather_model = make_model(gather_graph)
|
|
|
|
|
2021-10-26 10:30:14 +08:00
|
|
|
with RewriterContext(cfg={}, backend=backend.backend_name, opset=11):
|
|
|
|
ncnn_model = backend.onnx2ncnn(gather_model, 'gather', output_names,
|
|
|
|
save_dir)
|
2021-10-09 14:06:49 +08:00
|
|
|
|
|
|
|
# ncnn mat has implicit batch for mat, the ncnn_output is a mat,
|
|
|
|
# so the ncnn_outputs has 2 dimensions, not 1.
|
|
|
|
import importlib
|
2022-02-09 17:27:50 +08:00
|
|
|
|
|
|
|
import onnxruntime
|
2021-10-09 14:06:49 +08:00
|
|
|
assert importlib.util.find_spec('onnxruntime') is not None, 'onnxruntime \
|
|
|
|
not installed.'
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
session = onnxruntime.InferenceSession(gather_model.SerializeToString())
|
|
|
|
model_outputs = session.run(
|
|
|
|
output_names,
|
|
|
|
dict(
|
|
|
|
zip(input_names, [
|
|
|
|
np.array(data, dtype=np.float32),
|
|
|
|
np.array(indice[0], dtype=np.int64)
|
|
|
|
])))
|
|
|
|
model_outputs = [model_output for model_output in model_outputs]
|
|
|
|
|
|
|
|
ncnn_outputs = ncnn_model(
|
|
|
|
dict(zip(input_names, [data.float(), indice.float()])))
|
|
|
|
ncnn_outputs = [ncnn_outputs[name] for name in output_names]
|
|
|
|
assert_allclose(model_outputs, ncnn_outputs, tolerate_small_mismatch)
|
|
|
|
|
|
|
|
|
2021-10-09 11:42:32 +08:00
|
|
|
@pytest.mark.parametrize('backend', [TEST_NCNN])
|
|
|
|
@pytest.mark.parametrize('dim', [1, 2, 3])
|
|
|
|
def test_tensorslice(backend, dim, input_list=None, save_dir=None):
|
|
|
|
backend.check_env()
|
|
|
|
|
|
|
|
if input_list is None:
|
|
|
|
input = torch.rand((8, 12, 17)[-dim:]).unsqueeze(0)
|
|
|
|
else:
|
|
|
|
input = input_list[0]
|
|
|
|
assert input.dim() == dim + 1, f'input.dim() must equal to \
|
|
|
|
dim + 1, expected: {dim + 1}, got: {input.dim()}'
|
|
|
|
|
|
|
|
assert input.shape[0] == 1, (f'ncnn batch must be 1, \
|
|
|
|
but got {input.shape[0]}')
|
|
|
|
|
|
|
|
def tensorslice_function(inputs):
|
|
|
|
if dim == 1:
|
|
|
|
return inputs[:, 2:17:7]
|
|
|
|
if dim == 2:
|
|
|
|
return inputs[:, 3:12:4, 2:15:3]
|
|
|
|
if dim == 3:
|
|
|
|
return inputs[:, 0:8:2, 2:12:4, 2:17:7]
|
|
|
|
|
|
|
|
wrapped_model = WrapFunction(tensorslice_function)
|
|
|
|
|
2021-10-26 10:30:14 +08:00
|
|
|
with RewriterContext(cfg={}, backend=backend.backend_name, opset=11):
|
|
|
|
backend.run_and_validate(
|
|
|
|
wrapped_model, [input.float()],
|
|
|
|
'tensorslice',
|
|
|
|
input_names=['inputs'],
|
|
|
|
output_names=['outputs'],
|
|
|
|
save_dir=save_dir)
|
2021-10-14 10:24:14 +08:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('backend', [TEST_NCNN])
|
|
|
|
@pytest.mark.parametrize('input_dim, output_dim', [(1, 1), (1, 2), (1, 3),
|
|
|
|
(2, 2), (2, 3), (3, 3)])
|
|
|
|
def test_expand(backend,
|
|
|
|
input_dim,
|
|
|
|
output_dim,
|
|
|
|
input_list=None,
|
|
|
|
save_dir=None):
|
|
|
|
backend.check_env()
|
|
|
|
if input_list is None:
|
|
|
|
input = torch.rand((1, 12, 1)[-input_dim:]).unsqueeze(0)
|
|
|
|
target = torch.rand((8, 12, 17)[-output_dim:]).unsqueeze(0)
|
|
|
|
else:
|
|
|
|
input = input_list[0]
|
|
|
|
target = input_list[1]
|
|
|
|
assert input.shape[0] == 1, (f'ncnn batch must be 1, \
|
|
|
|
but not {input.shape[0]}')
|
|
|
|
assert target.shape[0] == 1, (f'ncnn batch must be 1, \
|
|
|
|
but not {target.shape[0]}')
|
|
|
|
|
|
|
|
def expand_function(input, target):
|
|
|
|
return input.expand_as(target)
|
|
|
|
|
|
|
|
wrapped_model = WrapFunction(expand_function)
|
2021-10-26 10:30:14 +08:00
|
|
|
with RewriterContext(cfg={}, backend=backend.backend_name, opset=11):
|
|
|
|
backend.run_and_validate(
|
|
|
|
wrapped_model, [input.float(), target.float()],
|
|
|
|
'expand',
|
|
|
|
input_names=['input', 'shape'],
|
|
|
|
output_names=['output'],
|
|
|
|
save_dir=save_dir)
|
2022-04-18 17:14:47 +08:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('backend', [TEST_ONNXRT])
|
|
|
|
@pytest.mark.parametrize('iou_threshold', [0.1, 0.3])
|
|
|
|
def test_nms_rotated(backend, iou_threshold, save_dir=None):
|
|
|
|
backend.check_env()
|
|
|
|
|
|
|
|
boxes = torch.tensor(
|
|
|
|
[[60, 75, 20, 50, 0], [65, 80, 10, 40, 0], [30, 30, 40, 40, 0]],
|
|
|
|
dtype=torch.float32)
|
|
|
|
scores = torch.tensor([0.5, 0.6, 0.7], dtype=torch.float32)
|
|
|
|
|
|
|
|
from mmdeploy.mmcv.ops import ONNXNMSRotatedOp
|
|
|
|
|
|
|
|
def wrapped_function(torch_boxes, torch_scores):
|
|
|
|
return ONNXNMSRotatedOp.apply(torch_boxes, torch_scores, iou_threshold)
|
|
|
|
|
|
|
|
wrapped_model = WrapFunction(wrapped_function).eval()
|
|
|
|
|
|
|
|
with RewriterContext(
|
|
|
|
Config({'backend_config': {
|
|
|
|
'type': backend.backend_name
|
|
|
|
}}),
|
|
|
|
backend=backend.backend_name,
|
|
|
|
opset=11):
|
|
|
|
backend.run_and_validate(
|
|
|
|
wrapped_model, [boxes, scores],
|
|
|
|
'nms_rotated',
|
|
|
|
input_names=['boxes', 'scores'],
|
|
|
|
output_names=['keep_inds'],
|
|
|
|
save_dir=save_dir)
|