mmdeploy/csrc/codebase/mmcls/linear_cls.cpp

68 lines
2.0 KiB
C++
Raw Normal View History

// Copyright (c) OpenMMLab. All rights reserved.
#include <numeric>
#include "codebase/mmcls/mmcls.h"
#include "core/tensor.h"
#include "core/utils/formatter.h"
#include "experimental/module_adapter.h"
using std::vector;
namespace mmdeploy::mmcls {
class LinearClsHead : public MMClassification {
public:
explicit LinearClsHead(const Value& cfg) : MMClassification(cfg) {
if (cfg.contains("params")) {
topk_ = cfg["params"].value("topk", 1);
if (topk_ <= 0) {
ERROR("'topk' should be greater than 0, but got '{}'", topk_);
throw_exception(eInvalidArgument);
}
}
}
Result<Value> operator()(const Value& infer_res) {
DEBUG("infer_res: {}", infer_res);
auto output_tensor = infer_res["output"].get<Tensor>();
assert(output_tensor.shape().size() >= 2);
auto class_num = (int)output_tensor.shape()[1];
if (output_tensor.device().is_host()) {
vector<float> scores(output_tensor.data<float>(),
output_tensor.data<float>() + output_tensor.size());
OUTCOME_TRY(stream().Wait());
return GetLabels(scores, class_num);
} else {
vector<float> scores(output_tensor.size());
OUTCOME_TRY(output_tensor.CopyTo(scores.data(), stream()));
OUTCOME_TRY(stream().Wait());
return GetLabels(scores, class_num);
}
}
private:
Value GetLabels(const vector<float>& scores, int class_num) const {
ClassifyOutput output;
output.labels.reserve(topk_);
std::vector<int> idx(class_num);
iota(begin(idx), end(idx), 0);
partial_sort(begin(idx), begin(idx) + topk_, end(idx),
[&](int i, int j) { return scores[i] > scores[j]; });
for (int i = 0; i < topk_; ++i) {
auto label = ClassifyOutput::Label{idx[i], scores[idx[i]]};
DEBUG("label_id: {}, score: {}", label.label_id, label.score);
output.labels.push_back(label);
}
return to_value(std::move(output));
}
private:
int topk_{1};
};
REGISTER_CODEBASE_COMPONENT(MMClassification, LinearClsHead);
} // namespace mmdeploy::mmcls