mmdeploy/tools/deploy.py

143 lines
4.5 KiB
Python
Raw Normal View History

2021-06-17 15:28:23 +08:00
import argparse
import logging
2021-06-17 15:29:12 +08:00
import os.path as osp
2021-06-17 15:28:23 +08:00
import mmcv
2021-06-17 17:26:32 +08:00
import torch.multiprocessing as mp
2021-06-17 15:29:12 +08:00
from torch.multiprocessing import Process, set_start_method
2021-06-17 15:28:23 +08:00
from mmdeploy.apis import inference_model, torch2onnx
2021-06-17 15:28:23 +08:00
def parse_args():
parser = argparse.ArgumentParser(description='Export model to backend.')
parser.add_argument('deploy_cfg', help='deploy config path')
parser.add_argument('model_cfg', help='model config path')
parser.add_argument('checkpoint', help='model checkpoint path')
parser.add_argument(
'img', help='image used to convert model and test model')
parser.add_argument('--work-dir', help='the dir to save logs and models')
parser.add_argument(
2021-06-17 17:37:08 +08:00
'--device', help='device used for conversion', default='cpu')
2021-06-23 13:14:28 +08:00
parser.add_argument(
'--log-level',
help='set log level',
default='INFO',
choices=list(logging._nameToLevel.keys()))
parser.add_argument(
'--show', action='store_true', help='Show detection outputs')
2021-06-17 15:28:23 +08:00
args = parser.parse_args()
return args
def create_process(name, target, args, kwargs, ret_value=None):
logging.info(f'start {name}.')
process = Process(target=target, args=args, kwargs=kwargs)
process.start()
process.join()
if ret_value is not None:
if ret_value.value != 0:
logging.error(f'{name} failed.')
exit()
else:
logging.info(f'{name} success.')
2021-06-17 15:28:23 +08:00
def main():
args = parse_args()
set_start_method('spawn')
2021-06-23 13:14:28 +08:00
logger = logging.getLogger()
logger.setLevel(args.log_level)
deploy_cfg_path = args.deploy_cfg
model_cfg_path = args.model_cfg
checkpoint_path = args.checkpoint
# load deploy_cfg
deploy_cfg = mmcv.Config.fromfile(deploy_cfg_path)
if not isinstance(deploy_cfg, (mmcv.Config, mmcv.ConfigDict)):
2021-06-23 13:14:28 +08:00
raise TypeError('deploy_cfg must be a filename or Config object, '
f'but got {type(deploy_cfg)}')
2021-06-17 15:28:23 +08:00
# create work_dir if not
mmcv.mkdir_or_exist(osp.abspath(args.work_dir))
2021-06-17 17:26:32 +08:00
ret_value = mp.Value('d', 0, lock=False)
2021-06-23 13:14:28 +08:00
# convert onnx
onnx_save_file = deploy_cfg['pytorch2onnx']['save_file']
create_process(
'torch2onnx',
2021-06-17 15:28:23 +08:00
target=torch2onnx,
2021-06-23 13:14:28 +08:00
args=(args.img, args.work_dir, onnx_save_file, deploy_cfg_path,
model_cfg_path, checkpoint_path),
kwargs=dict(device=args.device, ret_value=ret_value),
ret_value=ret_value)
2021-06-17 17:26:32 +08:00
2021-06-23 13:14:28 +08:00
# convert backend
onnx_files = [osp.join(args.work_dir, onnx_save_file)]
backend_files = onnx_files
2021-06-23 13:14:28 +08:00
backend = deploy_cfg.get('backend', 'default')
if backend == 'tensorrt':
assert hasattr(deploy_cfg, 'tensorrt_params')
tensorrt_params = deploy_cfg['tensorrt_params']
model_params = tensorrt_params.get('model_params', [])
assert len(model_params) == len(onnx_files)
2021-06-23 13:14:28 +08:00
from mmdeploy.apis.tensorrt import onnx2tensorrt
backend_files = []
for model_id, model_param, onnx_path in zip(
range(len(onnx_files)), model_params, onnx_files):
onnx_name = osp.splitext(osp.split(onnx_path)[1])[0]
save_file = model_param.get('save_file', onnx_name + '.engine')
create_process(
f'onnx2tensorrt of {onnx_path}',
2021-06-23 13:14:28 +08:00
target=onnx2tensorrt,
args=(args.work_dir, save_file, model_id, deploy_cfg_path,
2021-06-23 13:14:28 +08:00
onnx_path),
kwargs=dict(device=args.device, ret_value=ret_value),
ret_value=ret_value)
backend_files.append(osp.join(args.work_dir, save_file))
# check model outputs by visualization
codebase = deploy_cfg['codebase']
# visualize tensorrt model
create_process(
f'visualize {backend} model',
target=inference_model,
args=(model_cfg_path, backend_files, args.img),
kwargs=dict(
codebase=codebase,
backend=backend,
device=args.device,
output_file=f'output_{backend}.jpg',
show_result=args.show,
ret_value=ret_value))
# visualize pytorch model
create_process(
'visualize pytorch model',
target=inference_model,
args=(model_cfg_path, [checkpoint_path], args.img),
kwargs=dict(
codebase=codebase,
backend='pytorch',
device=args.device,
output_file='output_pytorch.jpg',
show_result=args.show,
ret_value=ret_value),
ret_value=ret_value)
2021-06-23 13:14:28 +08:00
logging.info('All process success.')
2021-06-17 15:28:23 +08:00
2021-06-17 15:29:12 +08:00
if __name__ == '__main__':
2021-06-17 15:28:23 +08:00
main()