69 lines
2.3 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
# The schedule is usually used by models trained on KITTI dataset
# The learning rate set in the cyclic schedule is the initial learning rate
# rather than the max learning rate. Since the target_ratio is (10, 1e-4),
# the learning rate will change from 0.0018 to 0.018, than go to 0.0018*1e-4
lr = 0.0018
# The optimizer follows the setting in SECOND.Pytorch, but here we use
# the official AdamW optimizer implemented by PyTorch.
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='AdamW', lr=lr, betas=(0.95, 0.99), weight_decay=0.01),
clip_grad=dict(max_norm=10, norm_type=2))
# learning rate
param_scheduler = [
# learning rate scheduler
# During the first 16 epochs, learning rate increases from 0 to lr * 10
# during the next 24 epochs, learning rate decreases from lr * 10 to
# lr * 1e-4
dict(
type='CosineAnnealingLR',
T_max=16,
eta_min=lr * 10,
begin=0,
end=16,
by_epoch=True,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=24,
eta_min=lr * 1e-4,
begin=16,
end=40,
by_epoch=True,
convert_to_iter_based=True),
# momentum scheduler
# During the first 16 epochs, momentum increases from 0 to 0.85 / 0.95
# during the next 24 epochs, momentum increases from 0.85 / 0.95 to 1
dict(
type='CosineAnnealingMomentum',
T_max=16,
eta_min=0.85 / 0.95,
begin=0,
end=16,
by_epoch=True,
convert_to_iter_based=True),
dict(
type='CosineAnnealingMomentum',
T_max=24,
eta_min=1,
begin=16,
end=40,
by_epoch=True,
convert_to_iter_based=True)
]
# Runtime settingstraining schedule for 40e
# Although the max_epochs is 40, this schedule is usually used we
# RepeatDataset with repeat ratio N, thus the actual max epoch
# number could be Nx40
train_cfg = dict(by_epoch=True, max_epochs=40, val_interval=1)
val_cfg = dict()
test_cfg = dict()
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (6 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=48)