mmdeploy/csrc/net/ncnn/ncnn_net.cpp

119 lines
3.4 KiB
C++
Raw Normal View History

Merge sdk (#251) * check in cmake * move backend_ops to csrc/backend_ops * check in preprocess, model, some codebase and their c-apis * check in CMakeLists.txt * check in parts of test_csrc * commit everything else * add readme * update core's BUILD_INTERFACE directory * skip codespell on third_party * update trt_net and ort_net's CMakeLists * ignore clion's build directory * check in pybind11 * add onnx.proto. Remove MMDeploy's dependency on ncnn's source code * export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON * remove useless message * target include directory is wrong * change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net * skip install directory * update project's cmake * remove useless code * set CMAKE_BUILD_TYPE to Release by force if it isn't set by user * update custom ops CMakeLists * pass object target's source lists * fix lint end-of-file * fix lint: trailing whitespace * fix codespell hook * remove bicubic_interpolate to csrc/backend_ops/ * set MMDEPLOY_BUILD_SDK OFF * change custom ops build command * add spdlog installation command * update docs on how to checkout pybind11 * move bicubic_interpolate to backend_ops/tensorrt directory * remove useless code * correct cmake * fix typo * fix typo * fix install directory * correct sdk's readme * set cub dir when cuda version < 11.0 * change directory where clang-format will apply to * fix build command * add .clang-format * change clang-format style from google to file * reformat csrc/backend_ops * format sdk's code * turn off clang-format for some files * add -Xcompiler=-fno-gnu-unique * fix trt topk initialize * check in config for sdk demo * update cmake script and csrc's readme * correct config's path * add cuda include directory, otherwise compile failed in case of tensorrt8.2 * clang-format onnx2ncnn.cpp Co-authored-by: zhangli <lzhang329@gmail.com> Co-authored-by: grimoire <yaoqian@sensetime.com>
2021-12-07 10:57:55 +08:00
// Copyright (c) OpenMMLab. All rights reserved.
#include "ncnn_net.h"
#include "core/logger.h"
#include "core/model.h"
#include "core/utils/formatter.h"
namespace mmdeploy {
NCNNNet::~NCNNNet() {}
Result<void> ncnn_status(int code) {
if (code == 0) {
return success();
}
return Status(eFail);
}
Result<void> NCNNNet::Init(const Value& args) {
auto& context = args["context"];
device_ = context["device"].get<Device>();
stream_ = context["stream"].get<Stream>();
if (!device_.is_host()) {
return Status(eNotSupported);
}
auto name = args["name"].get<std::string>();
auto model = context["model"].get<Model>();
OUTCOME_TRY(auto config, model.GetModelConfig(name));
OUTCOME_TRY(params_, model.ReadFile(config.net));
OUTCOME_TRY(weights_, model.ReadFile(config.weights));
OUTCOME_TRY(ncnn_status(net_.load_param_mem(params_.c_str())));
net_.load_model(reinterpret_cast<const unsigned char*>(weights_.data()));
input_indices_ = net_.input_indexes();
for (const auto& x : net_.input_names()) {
// input_names_.emplace_back(x);
input_tensors_.emplace_back(TensorDesc{
.device = Device("cpu"),
.data_type = DataType::kFLOAT,
.shape = {},
.name = x,
});
}
output_indices_ = net_.output_indexes();
for (const auto& x : net_.output_names()) {
// output_names_.emplace_back(x);
output_tensors_.emplace_back(TensorDesc{
.device = Device("cpu"),
.data_type = DataType::kFLOAT,
.shape = {},
.name = x,
});
}
return success();
}
Result<void> NCNNNet::Deinit() { return success(); }
Result<void> NCNNNet::Reshape(Span<TensorShape> input_shapes) {
for (size_t i = 0; i < input_shapes.size(); ++i) {
input_tensors_[i].Reshape(input_shapes[i]);
}
return success();
}
Result<Span<Tensor>> NCNNNet::GetInputTensors() { return input_tensors_; }
Result<Span<Tensor>> NCNNNet::GetOutputTensors() { return output_tensors_; }
// TODO: discuss a policy for batch processing
Result<void> NCNNNet::Forward() {
auto extractor = net_.create_extractor();
OUTCOME_TRY(stream_.Wait());
std::vector<ncnn::Mat> inputs(input_indices_.size());
for (size_t i = 0; i < input_indices_.size(); ++i) {
auto& tensor = input_tensors_[i];
auto shape = tensor.shape();
assert(shape[0] == 1);
inputs[i] = ncnn::Mat(shape[3], shape[2], shape[1], tensor.data());
OUTCOME_TRY(ncnn_status(extractor.input(input_indices_[i], inputs[i])));
}
std::vector<ncnn::Mat> outputs(output_indices_.size());
for (size_t i = 0; i < output_indices_.size(); ++i) {
OUTCOME_TRY(ncnn_status(extractor.extract(output_indices_[i], outputs[i])));
auto& tensor = output_tensors_[i];
auto shape = outputs[i].shape();
tensor.Reshape({1, shape.w, shape.h, shape.c});
// ncnn Mat may be padded, flatten to avoid that
auto flattened = outputs[i].reshape(shape.w * shape.h * shape.c);
OUTCOME_TRY(tensor.CopyFrom(flattened.data, stream_));
}
return success();
}
class NCNNNetCreator : public Creator<Net> {
public:
const char* GetName() const override { return "ncnn"; }
int GetVersion() const override { return 0; }
std::unique_ptr<Net> Create(const Value& args) override {
auto p = std::make_unique<NCNNNet>();
if (auto r = p->Init(args)) {
return p;
} else {
ERROR("error creating NCNNNet: {}", r.error().message().c_str());
return nullptr;
}
}
};
REGISTER_MODULE(Net, NCNNNetCreator);
} // namespace mmdeploy