mmdeploy/tests/test_codebase/test_mmcls/test_mmcls_models.py

291 lines
9.9 KiB
Python
Raw Normal View History

2021-11-30 15:00:37 +08:00
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import pytest
import torch
2022-06-22 22:32:14 +08:00
from mmengine import Config
from mmdeploy.codebase import import_codebase
2022-07-11 19:10:04 +08:00
from mmdeploy.core.rewriters.rewriter_manager import RewriterContext
from mmdeploy.utils import Backend, Codebase
from mmdeploy.utils.test import WrapModel, check_backend, get_rewrite_outputs
try:
from torch.testing import assert_close as torch_assert_close
except Exception:
from torch.testing import assert_allclose as torch_assert_close
try:
import_codebase(Codebase.MMCLS)
except ImportError:
pytest.skip(f'{Codebase.MMCLS} is not installed.', allow_module_level=True)
input = torch.rand(1)
def get_invertedresidual_model():
from mmcls.models.backbones.shufflenet_v2 import InvertedResidual
model = InvertedResidual(16, 16)
model.requires_grad_(False)
return model
def get_vit_model():
from mmcls.models.classifiers.image import ImageClassifier
model = ImageClassifier(
backbone={
'type':
'VisionTransformer',
'arch':
'b',
'img_size':
384,
'patch_size':
32,
'drop_rate':
0.1,
'init_cfg': [{
'type': 'Kaiming',
'layer': 'Conv2d',
'mode': 'fan_in',
'nonlinearity': 'linear'
}]
},
head={
'type': 'VisionTransformerClsHead',
'num_classes': 1000,
'in_channels': 768,
'loss': {
'type': 'CrossEntropyLoss',
'loss_weight': 1.0
},
'topk': (1, 5)
},
)
model.requires_grad_(False)
return model
def test_baseclassifier_forward():
2022-06-22 22:32:14 +08:00
from mmcls.models.classifiers import ImageClassifier
2022-06-22 22:32:14 +08:00
from mmdeploy.codebase.mmcls import models # noqa
2022-06-22 22:32:14 +08:00
class DummyClassifier(ImageClassifier):
2022-06-22 22:32:14 +08:00
def __init__(self, backbone):
super().__init__(backbone=backbone)
self.head = lambda x: x
self.predict = lambda x, data_samples: x
2022-06-22 22:32:14 +08:00
def extract_feat(self, batch_inputs: torch.Tensor):
return batch_inputs
input = torch.rand(1, 1000)
2022-06-22 22:32:14 +08:00
backbone_cfg = dict(
type='ResNet',
depth=18,
num_stages=4,
out_indices=(3, ),
style='pytorch')
model = DummyClassifier(backbone_cfg).eval()
2022-07-11 19:10:04 +08:00
model_output = model(input, None, mode='predict')
with RewriterContext({}):
backend_output = model(input)
torch_assert_close(model_output, input)
torch_assert_close(backend_output, torch.nn.functional.softmax(input, -1))
@pytest.mark.parametrize(
'backend_type',
[Backend.ONNXRUNTIME, Backend.TENSORRT, Backend.NCNN, Backend.OPENVINO])
def test_shufflenetv2_backbone__forward(backend_type: Backend):
check_backend(backend_type, True)
model = get_invertedresidual_model()
model.cpu().eval()
if backend_type.value == 'tensorrt':
2022-06-22 22:32:14 +08:00
deploy_cfg = Config(
dict(
backend_config=dict(
type=backend_type.value,
model_inputs=[
dict(
input_shapes=dict(
input=dict(
min_shape=[1, 16, 28, 28],
opt_shape=[1, 16, 28, 28],
max_shape=[1, 16, 28, 28])))
]),
onnx_config=dict(
input_shape=[28, 28], output_names=['output']),
codebase_config=dict(type='mmcls', task='Classification')))
else:
2022-06-22 22:32:14 +08:00
deploy_cfg = Config(
dict(
backend_config=dict(type=backend_type.value),
onnx_config=dict(input_shape=None, output_names=['output']),
codebase_config=dict(type='mmcls', task='Classification')))
imgs = torch.rand((1, 16, 28, 28))
model_outputs = model.forward(imgs)
wrapped_model = WrapModel(model, 'forward')
rewrite_inputs = {'x': imgs}
rewrite_outputs, is_backend_output = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)
if isinstance(rewrite_outputs, dict):
rewrite_outputs = rewrite_outputs['output']
for model_output, rewrite_output in zip(model_outputs, rewrite_outputs):
model_output = model_output.cpu().numpy()
if isinstance(rewrite_output, torch.Tensor):
rewrite_output = rewrite_output.cpu().numpy()
assert np.allclose(
model_output, rewrite_output, rtol=1e-03, atol=1e-05)
@pytest.mark.parametrize('backend_type', [Backend.NCNN])
def test_vision_transformer_backbone__forward(backend_type: Backend):
from mmcls.structures import ClsDataSample
2022-06-22 22:32:14 +08:00
from mmdeploy.core import patch_model
import_codebase(Codebase.MMCLS)
check_backend(backend_type, True)
model = get_vit_model()
model.eval()
2022-06-22 22:32:14 +08:00
deploy_cfg = Config(
dict(
backend_config=dict(type=backend_type.value),
onnx_config=dict(input_shape=None, output_names=['output']),
codebase_config=dict(type='mmcls', task='Classification')))
imgs = torch.rand((1, 3, 384, 384))
2022-06-22 22:32:14 +08:00
data_sample = ClsDataSample(
metainfo=dict(
scale_factor=(1, 1),
ori_shape=imgs.shape[2:],
img_shape=imgs.shape[2:]))
model = patch_model(
model, {}, backend=backend_type.value, data_samples=[data_sample])
model_outputs = model.forward(imgs)
wrapped_model = WrapModel(model, 'forward')
2022-06-22 22:32:14 +08:00
rewrite_inputs = {'batch_inputs': imgs}
rewrite_outputs, is_backend_output = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)
if isinstance(rewrite_outputs, dict):
rewrite_outputs = rewrite_outputs['output']
for model_output, rewrite_output in zip(model_outputs, rewrite_outputs):
if isinstance(rewrite_output, torch.Tensor):
rewrite_output = rewrite_output.cpu().numpy()
assert np.allclose(
model_output.reshape(-1),
rewrite_output.reshape(-1),
rtol=1e-03,
2022-07-11 19:10:04 +08:00
atol=1e-02)
@pytest.mark.parametrize(
'backend_type',
[Backend.ONNXRUNTIME, Backend.TENSORRT, Backend.NCNN, Backend.OPENVINO])
@pytest.mark.parametrize('inputs',
[torch.rand(1, 3, 5, 5), (torch.rand(1, 3, 7, 7))])
def test_gap__forward(backend_type: Backend, inputs: list):
check_backend(backend_type, False)
from mmcls.models.necks import GlobalAveragePooling
model = GlobalAveragePooling(dim=2)
is_input_tensor = isinstance(inputs, torch.Tensor)
if not is_input_tensor:
assert len(inputs) == 1, 'only test one input'
input_shape = inputs.shape if is_input_tensor else inputs[0].shape
model.cpu().eval()
if backend_type.value == 'tensorrt':
2022-06-22 22:32:14 +08:00
deploy_cfg = Config(
dict(
backend_config=dict(
type=backend_type.value,
model_inputs=[
dict(
input_shapes=dict(
input=dict(
min_shape=input_shape,
opt_shape=input_shape,
max_shape=input_shape)))
]),
onnx_config=dict(output_names=['output']),
codebase_config=dict(type='mmcls', task='Classification')))
else:
2022-06-22 22:32:14 +08:00
deploy_cfg = Config(
dict(
backend_config=dict(type=backend_type.value),
onnx_config=dict(input_shape=None, output_names=['output']),
codebase_config=dict(type='mmcls', task='Classification')))
inputs = torch.rand(input_shape)
model_outputs = model(inputs)
wrapped_model = WrapModel(model, 'forward')
rewrite_inputs = {'inputs': inputs if is_input_tensor else inputs[0]}
rewrite_outputs, is_backend_output = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)
if isinstance(rewrite_outputs, dict):
rewrite_outputs = rewrite_outputs['output']
for model_output, rewrite_output in zip(model_outputs, rewrite_outputs):
model_output = model_output.cpu().numpy()
if isinstance(rewrite_output, torch.Tensor):
rewrite_output = rewrite_output.cpu().numpy()
assert np.allclose(
model_output, rewrite_output, rtol=1e-03, atol=1e-05)
@pytest.mark.skipif(
reason='Only support GPU test', condition=not torch.cuda.is_available())
@pytest.mark.parametrize('backend_type', [(Backend.TENSORRT)])
def test_shift_windows_msa_cls(backend_type: Backend):
check_backend(backend_type)
from mmcls.models.utils import ShiftWindowMSA
model = ShiftWindowMSA(96, 3, 7)
model.cuda().eval()
output_names = ['output']
2022-09-22 19:49:50 +08:00
deploy_cfg = Config(
dict(
backend_config=dict(
type=backend_type.value,
model_inputs=[
dict(
input_shapes=dict(
query=dict(
min_shape=[1, 60800, 96],
opt_shape=[1, 60800, 96],
max_shape=[1, 60800, 96])))
]),
onnx_config=dict(
input_shape=None,
input_names=['query'],
output_names=output_names)))
query = torch.randn([1, 60800, 96]).cuda()
hw_shape = (torch.tensor(200), torch.tensor(304))
wrapped_model = WrapModel(model, 'forward')
rewrite_inputs = {'query': query, 'hw_shape': hw_shape}
_ = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg,
run_with_backend=False)