2021-09-27 16:10:47 +08:00
|
|
|
import tempfile
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
from mmdeploy.utils.constants import Backend
|
|
|
|
|
|
|
|
onnx_file = tempfile.NamedTemporaryFile(suffix='.onnx').name
|
|
|
|
test_img = torch.rand([1, 3, 64, 64])
|
|
|
|
|
|
|
|
|
|
|
|
class TestModel(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return x * 0.5
|
|
|
|
|
|
|
|
|
|
|
|
model = TestModel().eval().cuda()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture(autouse=True, scope='module')
|
|
|
|
def generate_onnx_file():
|
|
|
|
with torch.no_grad():
|
|
|
|
dynamic_axes = {
|
|
|
|
'input': {
|
|
|
|
0: 'batch',
|
|
|
|
2: 'width',
|
|
|
|
3: 'height'
|
|
|
|
},
|
|
|
|
'output': {
|
|
|
|
0: 'batch'
|
|
|
|
}
|
|
|
|
}
|
|
|
|
torch.onnx.export(
|
|
|
|
model,
|
|
|
|
test_img,
|
|
|
|
onnx_file,
|
|
|
|
output_names=['output'],
|
|
|
|
input_names=['input'],
|
|
|
|
keep_initializers_as_inputs=True,
|
|
|
|
do_constant_folding=True,
|
|
|
|
verbose=False,
|
|
|
|
opset_version=11,
|
|
|
|
dynamic_axes=dynamic_axes)
|
|
|
|
|
|
|
|
|
|
|
|
def check_backend_avaiable(backend):
|
|
|
|
if backend == Backend.TENSORRT:
|
|
|
|
from mmdeploy.apis.tensorrt import is_available as trt_available
|
|
|
|
if not trt_available():
|
|
|
|
pytest.skip(
|
|
|
|
'TensorRT is not installed or custom ops are not compiled.')
|
|
|
|
if not torch.cuda.is_available():
|
|
|
|
pytest.skip('CUDA is not available.')
|
|
|
|
|
|
|
|
|
|
|
|
def onnx2backend(backend, onnx_file):
|
|
|
|
if backend == Backend.TENSORRT:
|
2021-09-27 17:43:41 +08:00
|
|
|
from mmdeploy.apis.tensorrt import create_trt_engine, save_trt_engine
|
2021-09-27 16:10:47 +08:00
|
|
|
backend_file = tempfile.NamedTemporaryFile(suffix='.engine').name
|
|
|
|
engine = create_trt_engine(
|
|
|
|
onnx_file, {
|
|
|
|
'input': {
|
|
|
|
'min_shape': [1, 3, 64, 64],
|
|
|
|
'opt_shape': [1, 3, 64, 64],
|
|
|
|
'max_shape': [1, 3, 64, 64]
|
|
|
|
}
|
|
|
|
})
|
|
|
|
save_trt_engine(engine, backend_file)
|
|
|
|
return backend_file
|
|
|
|
|
|
|
|
|
|
|
|
def create_wrapper(backend, engine_file):
|
|
|
|
if backend == Backend.TENSORRT:
|
2021-09-27 17:43:41 +08:00
|
|
|
from mmdeploy.apis.tensorrt import TRTWrapper
|
2021-09-27 16:10:47 +08:00
|
|
|
trt_model = TRTWrapper(engine_file)
|
|
|
|
return trt_model
|
|
|
|
|
|
|
|
|
|
|
|
def run_wrapper(backend, wrapper, input):
|
|
|
|
if backend == Backend.TENSORRT:
|
|
|
|
input = input.cuda()
|
|
|
|
results = wrapper({'input': input})['output']
|
|
|
|
results = results.detach().cpu()
|
|
|
|
return results
|
|
|
|
|
|
|
|
|
|
|
|
ALL_BACKEND = [Backend.TENSORRT]
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('backend', ALL_BACKEND)
|
|
|
|
def test_wrapper(backend):
|
|
|
|
check_backend_avaiable(backend)
|
|
|
|
model_files = onnx2backend(backend, onnx_file)
|
|
|
|
assert model_files is not None
|
|
|
|
wrapper = create_wrapper(backend, model_files)
|
|
|
|
assert wrapper is not None
|
|
|
|
results = run_wrapper(backend, wrapper, test_img)
|
|
|
|
assert results is not None
|