diff --git a/docker/CPU/Dockerfile b/docker/CPU/Dockerfile index 20519f73e..80aef83f8 100644 --- a/docker/CPU/Dockerfile +++ b/docker/CPU/Dockerfile @@ -1,5 +1,5 @@ FROM openvino/ubuntu18_dev:2021.4.2 -ARG PYTHON_VERSION=3.7 +ARG PYTHON_VERSION=3.8 ARG TORCH_VERSION=1.10.0 ARG TORCHVISION_VERSION=0.11.0 ARG ONNXRUNTIME_VERSION=1.8.1 @@ -114,4 +114,4 @@ RUN cd mmdeploy && rm -rf build/CM* && mkdir -p build && cd build && cmake .. \ -DMMDEPLOY_CODEBASES=all &&\ cmake --build . -- -j$(nproc) && cmake --install . &&\ export SPDLOG_LEVEL=warn &&\ - if [ -z ${VERSION} ] ; then echo "Built MMDeploy master for CPU devices successfully!" ; else echo "Built MMDeploy version v${VERSION} for CPU devices successfully!" ; fi + if [ -z ${VERSION} ] ; then echo "Built MMDeploy 1.x for CPU devices successfully!" ; else echo "Built MMDeploy version v${VERSION} for CPU devices successfully!" ; fi diff --git a/docker/GPU/Dockerfile b/docker/GPU/Dockerfile index e2488953f..bac11333f 100644 --- a/docker/GPU/Dockerfile +++ b/docker/GPU/Dockerfile @@ -101,6 +101,6 @@ RUN cd /root/workspace/mmdeploy &&\ -DMMDEPLOY_CODEBASES=all &&\ make -j$(nproc) && make install &&\ export SPDLOG_LEVEL=warn &&\ - if [ -z ${VERSION} ] ; then echo "Built MMDeploy master for GPU devices successfully!" ; else echo "Built MMDeploy version v${VERSION} for GPU devices successfully!" ; fi + if [ -z ${VERSION} ] ; then echo "Built MMDeploy dev-1.x for GPU devices successfully!" ; else echo "Built MMDeploy version v${VERSION} for GPU devices successfully!" ; fi ENV LD_LIBRARY_PATH="/root/workspace/mmdeploy/build/lib:${BACKUP_LD_LIBRARY_PATH}" diff --git a/docs/en/01-how-to-build/linux-x86_64.md b/docs/en/01-how-to-build/linux-x86_64.md index 5805ca6b1..5aeb0ad38 100644 --- a/docs/en/01-how-to-build/linux-x86_64.md +++ b/docs/en/01-how-to-build/linux-x86_64.md @@ -75,7 +75,8 @@ conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=11.1 -c pytorch -c c export cu_version=cu111 # cuda 11.1 export torch_version=torch1.8 pip install -U openmim -mim install "mmcv>=2.0.0rc1" +mim install mmengine +mim install "mmcv>=2.0.0rc2" @@ -326,7 +327,7 @@ Please check [cmake build option](cmake_option.md). ```bash cd ${MMDEPLOY_DIR} -pip install -e . +mim install -e . ``` **Note** diff --git a/docs/en/01-how-to-build/macos-arm64.md b/docs/en/01-how-to-build/macos-arm64.md index bf86c6c1a..4c5b54464 100644 --- a/docs/en/01-how-to-build/macos-arm64.md +++ b/docs/en/01-how-to-build/macos-arm64.md @@ -37,7 +37,8 @@ Please refer to [get_started](../get_started.md) to install conda. # install pytorch & mmcv conda install pytorch==1.9.0 torchvision==0.10.0 -c pytorch pip install -U openmim -mim install "mmcv>=2.0.0rc1" +mim install mmengine +mim install "mmcv>=2.0.0rc2" ``` ### Install Dependencies for SDK @@ -146,7 +147,7 @@ conda install grpcio ```bash cd ${MMDEPLOY_DIR} -pip install -v -e . +mim install -v -e . ``` **Note** diff --git a/docs/en/get_started.md b/docs/en/get_started.md index afbf9ea53..3754b5fff 100644 --- a/docs/en/get_started.md +++ b/docs/en/get_started.md @@ -64,6 +64,7 @@ We recommend that users follow our best practices installing MMDeploy. ```shell pip install -U openmim +mim install mmengine mim install "mmcv>=2.0.0rc2" ``` @@ -172,12 +173,12 @@ Based on the above settings, we provide an example to convert the Faster R-CNN i ```shell # clone mmdeploy to get the deployment config. `--recursive` is not necessary -git clone https://github.com/open-mmlab/mmdeploy.git +git clone -b dev-1.x https://github.com/open-mmlab/mmdeploy.git # clone mmdetection repo. We have to use the config file to build PyTorch nn module -git clone https://github.com/open-mmlab/mmdetection.git +git clone -b 3.x https://github.com/open-mmlab/mmdetection.git cd mmdetection -pip install -v -e . +mim install -v -e . cd .. # download Faster R-CNN checkpoint @@ -186,7 +187,7 @@ wget -P checkpoints https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/ # run the command to start model conversion python mmdeploy/tools/deploy.py \ mmdeploy/configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.py \ - mmdetection/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \ + mmdetection/configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py \ checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \ mmdetection/demo/demo.jpg \ --work-dir mmdeploy_model/faster-rcnn \ @@ -201,7 +202,7 @@ For more details about model conversion, you can read [how_to_convert_model](02- ```{tip} If MMDeploy-ONNXRuntime prebuilt package is installed, you can convert the above model to onnx model and perform ONNX Runtime inference -just by 'changing detection_tensorrt_dynamic-320x320-1344x1344.py' to 'detection_onnxruntime_dynamic.py' and making '--device' as 'cpu'. +just by changing 'detection_tensorrt_dynamic-320x320-1344x1344.py' to 'detection_onnxruntime_dynamic.py' and making '--device' as 'cpu'. ``` ## Inference Model diff --git a/docs/zh_cn/01-how-to-build/linux-x86_64.md b/docs/zh_cn/01-how-to-build/linux-x86_64.md index 1a7e7c5f7..24d366070 100644 --- a/docs/zh_cn/01-how-to-build/linux-x86_64.md +++ b/docs/zh_cn/01-how-to-build/linux-x86_64.md @@ -76,7 +76,8 @@ conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=11.1 -c pytorch -c c export cu_version=cu111 # cuda 11.1 export torch_version=torch1.8 pip install -U openmim -mim install "mmcv>=2.0.0rc1" +mim install mmengine +mim install "mmcv>=2.0.0rc2" @@ -323,7 +324,7 @@ export MMDEPLOY_DIR=$(pwd) ```bash cd ${MMDEPLOY_DIR} -pip install -e . +mim install -e . ``` **注意** diff --git a/docs/zh_cn/01-how-to-build/macos-arm64.md b/docs/zh_cn/01-how-to-build/macos-arm64.md index 7d0fab9e6..520698c82 100644 --- a/docs/zh_cn/01-how-to-build/macos-arm64.md +++ b/docs/zh_cn/01-how-to-build/macos-arm64.md @@ -40,7 +40,8 @@ # install pytoch & mmcv conda install pytorch==1.9.0 torchvision==0.10.0 -c pytorch pip install -U openmim -mim install "mmcv>=2.0.0rc1" +mim install mmengine +mim install "mmcv>=2.0.0rc2" ``` #### 安装 MMDeploy SDK 依赖 @@ -147,7 +148,7 @@ conda install grpcio ```bash cd ${MMDEPLOY_DIR} -pip install -v -e . +mim install -v -e . ``` **注意** diff --git a/docs/zh_cn/get_started.md b/docs/zh_cn/get_started.md index 5b3b5d870..0368dc170 100644 --- a/docs/zh_cn/get_started.md +++ b/docs/zh_cn/get_started.md @@ -167,13 +167,13 @@ export LD_LIBRARY_PATH=$CUDNN_DIR/lib64:$LD_LIBRARY_PATH 以 [MMDetection](https://github.com/open-mmlab/mmdetection) 中的 `Faster R-CNN` 为例,我们可以使用如下命令,将 PyTorch 模型转换为 TenorRT 模型,从而部署到 NVIDIA GPU 上. ```shell -# 克隆 mmdeploy 仓库。转换时,需要使用 mmdeploy 仓库中的配置文件,建立转换流水线 -git clone --recursive https://github.com/open-mmlab/mmdeploy.git +# 克隆 mmdeploy 仓库。转换时,需要使用 mmdeploy 仓库中的配置文件,建立转换流水线, `--recursive` 不是必须的 +git clone -b dev-1.x --recursive https://github.com/open-mmlab/mmdeploy.git # 安装 mmdetection。转换时,需要使用 mmdetection 仓库中的模型配置文件,构建 PyTorch nn module -git clone https://github.com/open-mmlab/mmdetection.git +git clone -b 3.x https://github.com/open-mmlab/mmdetection.git cd mmdetection -pip install -v -e . +mim install -v -e . cd .. # 下载 Faster R-CNN 模型权重 @@ -182,7 +182,7 @@ wget -P checkpoints https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/ # 执行转换命令,实现端到端的转换 python mmdeploy/tools/deploy.py \ mmdeploy/configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.py \ - mmdetection/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \ + mmdetection/configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py \ checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \ mmdetection/demo/demo.jpg \ --work-dir mmdeploy_model/faster-rcnn \