diff --git a/.github/ISSUE_TEMPLATE/1-bug-report.yml b/.github/ISSUE_TEMPLATE/1-bug-report.yml
index b1ed89775..85f7d0556 100644
--- a/.github/ISSUE_TEMPLATE/1-bug-report.yml
+++ b/.github/ISSUE_TEMPLATE/1-bug-report.yml
@@ -9,7 +9,7 @@ body:
label: Checklist
options:
- label: I have searched related issues but cannot get the expected help.
- - label: 2. I have read the [FAQ documentation](https://github.com/open-mmlab/mmdeploy/tree/1.x/docs/en/faq.md) but cannot get the expected help.
+ - label: 2. I have read the [FAQ documentation](https://github.com/open-mmlab/mmdeploy/tree/main/docs/en/faq.md) but cannot get the expected help.
- label: 3. The bug has not been fixed in the latest version.
- type: textarea
attributes:
diff --git a/docs/en/04-supported-codebases/mmcls.md b/docs/en/04-supported-codebases/mmcls.md
index 1c39f6ba5..1cdfe1383 100644
--- a/docs/en/04-supported-codebases/mmcls.md
+++ b/docs/en/04-supported-codebases/mmcls.md
@@ -35,7 +35,7 @@ If your target platform is **Ubuntu 18.04 or later version**, we encourage you t
[scripts](../01-how-to-build/build_from_script.md). For example, the following commands install mmdeploy as well as inference engine - `ONNX Runtime`.
```shell
-git clone --recursive -b 1.x https://github.com/open-mmlab/mmdeploy.git
+git clone --recursive -b main https://github.com/open-mmlab/mmdeploy.git
cd mmdeploy
python3 tools/scripts/build_ubuntu_x64_ort.py $(nproc)
export PYTHONPATH=$(pwd)/build/lib:$PYTHONPATH
@@ -48,7 +48,7 @@ If neither **I** nor **II** meets your requirements, [building mmdeploy from sou
## Convert model
-You can use [tools/deploy.py](https://github.com/open-mmlab/mmdeploy/tree/1.x/tools/deploy.py) to convert mmcls models to the specified backend models. Its detailed usage can be learned from [here](https://github.com/open-mmlab/mmdeploy/tree/1.x/docs/en/02-how-to-run/convert_model.md#usage).
+You can use [tools/deploy.py](https://github.com/open-mmlab/mmdeploy/tree/main/tools/deploy.py) to convert mmcls models to the specified backend models. Its detailed usage can be learned from [here](https://github.com/open-mmlab/mmdeploy/tree/main/docs/en/02-how-to-run/convert_model.md#usage).
The command below shows an example about converting `resnet18` model to onnx model that can be inferred by ONNX Runtime.
@@ -70,7 +70,7 @@ python tools/deploy.py \
--dump-info
```
-It is crucial to specify the correct deployment config during model conversion. We've already provided builtin deployment config [files](https://github.com/open-mmlab/mmdeploy/tree/1.x/configs/mmcls) of all supported backends for mmclassification. The config filename pattern is:
+It is crucial to specify the correct deployment config during model conversion. We've already provided builtin deployment config [files](https://github.com/open-mmlab/mmdeploy/tree/main/configs/mmcls) of all supported backends for mmclassification. The config filename pattern is:
```
classification_{backend}-{precision}_{static | dynamic}_{shape}.py
@@ -81,7 +81,7 @@ classification_{backend}-{precision}_{static | dynamic}_{shape}.py
- **{static | dynamic}:** static shape or dynamic shape
- **{shape}:** input shape or shape range of a model
-Therefore, in the above example, you can also convert `resnet18` to other backend models by changing the deployment config file `classification_onnxruntime_dynamic.py` to [others](https://github.com/open-mmlab/mmdeploy/tree/1.x/configs/mmcls), e.g., converting to tensorrt-fp16 model by `classification_tensorrt-fp16_dynamic-224x224-224x224.py`.
+Therefore, in the above example, you can also convert `resnet18` to other backend models by changing the deployment config file `classification_onnxruntime_dynamic.py` to [others](https://github.com/open-mmlab/mmdeploy/tree/main/configs/mmcls), e.g., converting to tensorrt-fp16 model by `classification_tensorrt-fp16_dynamic-224x224-224x224.py`.
```{tip}
When converting mmcls models to tensorrt models, --device should be set to "cuda"
diff --git a/docs/en/04-supported-codebases/mmdet.md b/docs/en/04-supported-codebases/mmdet.md
index 92d822e2e..28762b004 100644
--- a/docs/en/04-supported-codebases/mmdet.md
+++ b/docs/en/04-supported-codebases/mmdet.md
@@ -35,7 +35,7 @@ If your target platform is **Ubuntu 18.04 or later version**, we encourage you t
[scripts](../01-how-to-build/build_from_script.md). For example, the following commands install mmdeploy as well as inference engine - `ONNX Runtime`.
```shell
-git clone --recursive -b 1.x https://github.com/open-mmlab/mmdeploy.git
+git clone --recursive -b main https://github.com/open-mmlab/mmdeploy.git
cd mmdeploy
python3 tools/scripts/build_ubuntu_x64_ort.py $(nproc)
export PYTHONPATH=$(pwd)/build/lib:$PYTHONPATH
@@ -48,7 +48,7 @@ If neither **I** nor **II** meets your requirements, [building mmdeploy from sou
## Convert model
-You can use [tools/deploy.py](https://github.com/open-mmlab/mmdeploy/tree/1.x/tools/deploy.py) to convert mmdet models to the specified backend models. Its detailed usage can be learned from [here](../02-how-to-run/convert_model.md).
+You can use [tools/deploy.py](https://github.com/open-mmlab/mmdeploy/tree/main/tools/deploy.py) to convert mmdet models to the specified backend models. Its detailed usage can be learned from [here](../02-how-to-run/convert_model.md).
The command below shows an example about converting `Faster R-CNN` model to onnx model that can be inferred by ONNX Runtime.
@@ -68,7 +68,7 @@ python tools/deploy.py \
--dump-info
```
-It is crucial to specify the correct deployment config during model conversion. We've already provided builtin deployment config [files](https://github.com/open-mmlab/mmdeploy/tree/1.x/configs/mmdet) of all supported backends for mmdetection, under which the config file path follows the pattern:
+It is crucial to specify the correct deployment config during model conversion. We've already provided builtin deployment config [files](https://github.com/open-mmlab/mmdeploy/tree/main/configs/mmdet) of all supported backends for mmdetection, under which the config file path follows the pattern:
```
{task}/{task}_{backend}-{precision}_{static | dynamic}_{shape}.py
@@ -90,7 +90,7 @@ It is crucial to specify the correct deployment config during model conversion.
- **{shape}:** input shape or shape range of a model
-Therefore, in the above example, you can also convert `faster r-cnn` to other backend models by changing the deployment config file `detection_onnxruntime_dynamic.py` to [others](https://github.com/open-mmlab/mmdeploy/tree/1.x/configs/mmdet/detection), e.g., converting to tensorrt-fp16 model by `detection_tensorrt-fp16_dynamic-320x320-1344x1344.py`.
+Therefore, in the above example, you can also convert `faster r-cnn` to other backend models by changing the deployment config file `detection_onnxruntime_dynamic.py` to [others](https://github.com/open-mmlab/mmdeploy/tree/main/configs/mmdet/detection), e.g., converting to tensorrt-fp16 model by `detection_tensorrt-fp16_dynamic-320x320-1344x1344.py`.
```{tip}
When converting mmdet models to tensorrt models, --device should be set to "cuda"
@@ -185,7 +185,7 @@ for index, bbox, label_id in zip(indices, bboxes, labels):
cv2.imwrite('output_detection.png', img)
```
-Besides python API, mmdeploy SDK also provides other FFI (Foreign Function Interface), such as C, C++, C#, Java and so on. You can learn their usage from [demos](https://github.com/open-mmlab/mmdeploy/tree/1.x/demo).
+Besides python API, mmdeploy SDK also provides other FFI (Foreign Function Interface), such as C, C++, C#, Java and so on. You can learn their usage from [demos](https://github.com/open-mmlab/mmdeploy/tree/main/demo).
## Supported models
diff --git a/docs/en/04-supported-codebases/mmocr.md b/docs/en/04-supported-codebases/mmocr.md
index b67f7980a..da896bb86 100644
--- a/docs/en/04-supported-codebases/mmocr.md
+++ b/docs/en/04-supported-codebases/mmocr.md
@@ -40,7 +40,7 @@ If your target platform is **Ubuntu 18.04 or later version**, we encourage you t
[scripts](../01-how-to-build/build_from_script.md). For example, the following commands install mmdeploy as well as inference engine - `ONNX Runtime`.
```shell
-git clone --recursive -b 1.x https://github.com/open-mmlab/mmdeploy.git
+git clone --recursive -b main https://github.com/open-mmlab/mmdeploy.git
cd mmdeploy
python3 tools/scripts/build_ubuntu_x64_ort.py $(nproc)
export PYTHONPATH=$(pwd)/build/lib:$PYTHONPATH
@@ -53,9 +53,9 @@ If neither **I** nor **II** meets your requirements, [building mmdeploy from sou
## Convert model
-You can use [tools/deploy.py](https://github.com/open-mmlab/mmdeploy/tree/1.x/tools/deploy.py) to convert mmocr models to the specified backend models. Its detailed usage can be learned from [here](https://github.com/open-mmlab/mmdeploy/tree/1.x/docs/en/02-how-to-run/convert_model.md#usage).
+You can use [tools/deploy.py](https://github.com/open-mmlab/mmdeploy/tree/main/tools/deploy.py) to convert mmocr models to the specified backend models. Its detailed usage can be learned from [here](https://github.com/open-mmlab/mmdeploy/tree/main/docs/en/02-how-to-run/convert_model.md#usage).
-When using `tools/deploy.py`, it is crucial to specify the correct deployment config. We've already provided builtin deployment config [files](https://github.com/open-mmlab/mmdeploy/tree/1.x/configs/mmocr) of all supported backends for mmocr, under which the config file path follows the pattern:
+When using `tools/deploy.py`, it is crucial to specify the correct deployment config. We've already provided builtin deployment config [files](https://github.com/open-mmlab/mmdeploy/tree/main/configs/mmocr) of all supported backends for mmocr, under which the config file path follows the pattern:
```
{task}/{task}_{backend}-{precision}_{static | dynamic}_{shape}.py
@@ -113,7 +113,7 @@ python tools/deploy.py \
--dump-info
```
-You can also convert the above models to other backend models by changing the deployment config file `*_onnxruntime_dynamic.py` to [others](https://github.com/open-mmlab/mmdeploy/tree/1.x/configs/mmocr), e.g., converting `dbnet` to tensorrt-fp32 model by `text-detection/text-detection_tensorrt-_dynamic-320x320-2240x2240.py`.
+You can also convert the above models to other backend models by changing the deployment config file `*_onnxruntime_dynamic.py` to [others](https://github.com/open-mmlab/mmdeploy/tree/main/configs/mmocr), e.g., converting `dbnet` to tensorrt-fp32 model by `text-detection/text-detection_tensorrt-_dynamic-320x320-2240x2240.py`.
```{tip}
When converting mmocr models to tensorrt models, --device should be set to "cuda"
@@ -230,7 +230,7 @@ texts = recognizer(img)
print(texts)
```
-Besides python API, mmdeploy SDK also provides other FFI (Foreign Function Interface), such as C, C++, C#, Java and so on. You can learn their usage from [demos](https://github.com/open-mmlab/mmdeploy/tree/1.x/demo).
+Besides python API, mmdeploy SDK also provides other FFI (Foreign Function Interface), such as C, C++, C#, Java and so on. You can learn their usage from [demos](https://github.com/open-mmlab/mmdeploy/tree/main/demo).
## Supported models
diff --git a/docs/en/04-supported-codebases/mmpose.md b/docs/en/04-supported-codebases/mmpose.md
index 350e45d80..85a07f111 100644
--- a/docs/en/04-supported-codebases/mmpose.md
+++ b/docs/en/04-supported-codebases/mmpose.md
@@ -35,7 +35,7 @@ If your target platform is **Ubuntu 18.04 or later version**, we encourage you t
[scripts](../01-how-to-build/build_from_script.md). For example, the following commands install mmdeploy as well as inference engine - `ONNX Runtime`.
```shell
-git clone --recursive -b 1.x https://github.com/open-mmlab/mmdeploy.git
+git clone --recursive -b main https://github.com/open-mmlab/mmdeploy.git
cd mmdeploy
python3 tools/scripts/build_ubuntu_x64_ort.py $(nproc)
export PYTHONPATH=$(pwd)/build/lib:$PYTHONPATH
@@ -48,7 +48,7 @@ If neither **I** nor **II** meets your requirements, [building mmdeploy from sou
## Convert model
-You can use [tools/deploy.py](https://github.com/open-mmlab/mmdeploy/tree/1.x/tools/deploy.py) to convert mmpose models to the specified backend models. Its detailed usage can be learned from [here](https://github.com/open-mmlab/mmdeploy/tree/1.x/docs/en/02-how-to-run/convert_model.md#usage).
+You can use [tools/deploy.py](https://github.com/open-mmlab/mmdeploy/tree/main/tools/deploy.py) to convert mmpose models to the specified backend models. Its detailed usage can be learned from [here](https://github.com/open-mmlab/mmdeploy/tree/main/docs/en/02-how-to-run/convert_model.md#usage).
The command below shows an example about converting `hrnet` model to onnx model that can be inferred by ONNX Runtime.
@@ -67,7 +67,7 @@ python tools/deploy.py \
--show
```
-It is crucial to specify the correct deployment config during model conversion. We've already provided builtin deployment config [files](https://github.com/open-mmlab/mmdeploy/tree/1.x/configs/mmpose) of all supported backends for mmpose. The config filename pattern is:
+It is crucial to specify the correct deployment config during model conversion. We've already provided builtin deployment config [files](https://github.com/open-mmlab/mmdeploy/tree/main/configs/mmpose) of all supported backends for mmpose. The config filename pattern is:
```
pose-detection_{backend}-{precision}_{static | dynamic}_{shape}.py
@@ -78,7 +78,7 @@ pose-detection_{backend}-{precision}_{static | dynamic}_{shape}.py
- **{static | dynamic}:** static shape or dynamic shape
- **{shape}:** input shape or shape range of a model
-Therefore, in the above example, you can also convert `hrnet` to other backend models by changing the deployment config file `pose-detection_onnxruntime_static.py` to [others](https://github.com/open-mmlab/mmdeploy/tree/1.x/configs/mmpose), e.g., converting to tensorrt model by `pose-detection_tensorrt_static-256x192.py`.
+Therefore, in the above example, you can also convert `hrnet` to other backend models by changing the deployment config file `pose-detection_onnxruntime_static.py` to [others](https://github.com/open-mmlab/mmdeploy/tree/main/configs/mmpose), e.g., converting to tensorrt model by `pose-detection_tensorrt_static-256x192.py`.
```{tip}
When converting mmpose models to tensorrt models, --device should be set to "cuda"
diff --git a/docs/zh_cn/01-how-to-build/rockchip.md b/docs/zh_cn/01-how-to-build/rockchip.md
index 7ea6ad1be..109ac2d5d 100644
--- a/docs/zh_cn/01-how-to-build/rockchip.md
+++ b/docs/zh_cn/01-how-to-build/rockchip.md
@@ -105,7 +105,7 @@ python tools/deploy.py \
- YOLOV3 & YOLOX
-将下面的模型拆分配置写入到 [detection_rknn_static.py](https://github.com/open-mmlab/mmdeploy/blob/1.x/configs/mmdet/detection/detection_rknn-int8_static-320x320.py)
+将下面的模型拆分配置写入到 [detection_rknn_static.py](https://github.com/open-mmlab/mmdeploy/blob/main/configs/mmdet/detection/detection_rknn-int8_static-320x320.py)
```python
# yolov3, yolox for rknn-toolkit and rknn-toolkit2
@@ -154,7 +154,7 @@ partition_config = dict(
- RetinaNet & SSD & FSAF with rknn-toolkit2
-将下面的模型拆分配置写入到 [detection_rknn_static.py](https://github.com/open-mmlab/mmdeploy/blob/1.x/configs/mmdet/detection/detection_rknn-int8_static-320x320.py)。使用 rknn-toolkit 的用户则不用。
+将下面的模型拆分配置写入到 [detection_rknn_static.py](https://github.com/open-mmlab/mmdeploy/blob/main/configs/mmdet/detection/detection_rknn-int8_static-320x320.py)。使用 rknn-toolkit 的用户则不用。
```python
# retinanet, ssd and fsaf for rknn-toolkit2
diff --git a/docs/zh_cn/conf.py b/docs/zh_cn/conf.py
index fd8ab6b95..c060165f5 100644
--- a/docs/zh_cn/conf.py
+++ b/docs/zh_cn/conf.py
@@ -106,7 +106,7 @@ html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()]
# documentation.
#
html_theme_options = {
- 'logo_url': 'https://mmdeploy.readthedocs.io/zh_CN/1.x/',
+ 'logo_url': 'https://mmdeploy.readthedocs.io/zh_CN/latest/',
'menu': [{
'name': 'GitHub',
'url': 'https://github.com/open-mmlab/mmdeploy'
diff --git a/docs/zh_cn/get_started.md b/docs/zh_cn/get_started.md
index c7ea18a47..dc3c8b5f1 100644
--- a/docs/zh_cn/get_started.md
+++ b/docs/zh_cn/get_started.md
@@ -268,7 +268,7 @@ for index, bbox, label_id in zip(indices, bboxes, labels):
cv2.imwrite('output_detection.png', img)
```
-更多示例,请查阅[这里](https://github.com/open-mmlab/mmdeploy/tree/1.x/demo/python)。
+更多示例,请查阅[这里](https://github.com/open-mmlab/mmdeploy/tree/main/demo/python)。
#### C++ API
@@ -322,9 +322,9 @@ target_link_libraries(${name} PRIVATE mmdeploy ${OpenCV_LIBS})
```
编译时,使用 -DMMDeploy_DIR,传入MMDeloyConfig.cmake所在的路径。它在预编译包中的sdk/lib/cmake/MMDeloy下。
-更多示例,请查阅[此处](https://github.com/open-mmlab/mmdeploy/tree/1.x/demo/csrc/cpp)。
+更多示例,请查阅[此处](https://github.com/open-mmlab/mmdeploy/tree/main/demo/csrc/cpp)。
-对于 C API、C# API、Java API 的使用方法,请分别阅读代码[C demos](https://github.com/open-mmlab/mmdeploy/tree/1.x/demo/csrc/c), [C# demos](https://github.com/open-mmlab/mmdeploy/tree/1.x/demo/csharp) 和 [Java demos](https://github.com/open-mmlab/mmdeploy/tree/1.x/demo/java)。
+对于 C API、C# API、Java API 的使用方法,请分别阅读代码[C demos](https://github.com/open-mmlab/mmdeploy/tree/main/demo/csrc/c), [C# demos](https://github.com/open-mmlab/mmdeploy/tree/main/demo/csharp) 和 [Java demos](https://github.com/open-mmlab/mmdeploy/tree/main/demo/java)。
我们将在后续版本中详细讲述它们的用法。
#### 加速预处理(实验性功能)
diff --git a/docs/zh_cn/switch_language.md b/docs/zh_cn/switch_language.md
index 03bf778b7..1b5df4292 100644
--- a/docs/zh_cn/switch_language.md
+++ b/docs/zh_cn/switch_language.md
@@ -1,3 +1,3 @@
-## English
+## English
-## 简体中文
+## 简体中文
diff --git a/docs/zh_cn/tutorial/02_challenges.md b/docs/zh_cn/tutorial/02_challenges.md
index e3d0e3797..23f3762aa 100644
--- a/docs/zh_cn/tutorial/02_challenges.md
+++ b/docs/zh_cn/tutorial/02_challenges.md
@@ -1,6 +1,6 @@
# 第二章:解决模型部署中的难题
-在[第一章](https://mmdeploy.readthedocs.io/zh_CN/1.x/tutorial/01_introduction_to_model_deployment.html)中,我们部署了一个简单的超分辨率模型,一切都十分顺利。但是,上一个模型还有一些缺陷——图片的放大倍数固定是 4,我们无法让图片放大任意的倍数。现在,我们来尝试部署一个支持动态放大倍数的模型,体验一下在模型部署中可能会碰到的困难。
+在[第一章](https://mmdeploy.readthedocs.io/zh_CN/latest/tutorial/01_introduction_to_model_deployment.html)中,我们部署了一个简单的超分辨率模型,一切都十分顺利。但是,上一个模型还有一些缺陷——图片的放大倍数固定是 4,我们无法让图片放大任意的倍数。现在,我们来尝试部署一个支持动态放大倍数的模型,体验一下在模型部署中可能会碰到的困难。
## 模型部署中常见的难题
@@ -10,7 +10,7 @@
- 新算子的实现。深度学习技术日新月异,提出新算子的速度往往快于 ONNX 维护者支持的速度。为了部署最新的模型,部署工程师往往需要自己在 ONNX 和推理引擎中支持新算子。
- 中间表示与推理引擎的兼容问题。由于各推理引擎的实现不同,对 ONNX 难以形成统一的支持。为了确保模型在不同的推理引擎中有同样的运行效果,部署工程师往往得为某个推理引擎定制模型代码,这为模型部署引入了许多工作量。
-我们会在后续教程详细讲述解决这些问题的方法。如果对前文中 ONNX、推理引擎、中间表示、算子等名词感觉陌生,不用担心,可以阅读[第一章](https://mmdeploy.readthedocs.io/zh_CN/1.x/tutorial/01_introduction_to_model_deployment.html),了解有关概念。
+我们会在后续教程详细讲述解决这些问题的方法。如果对前文中 ONNX、推理引擎、中间表示、算子等名词感觉陌生,不用担心,可以阅读[第一章](https://mmdeploy.readthedocs.io/zh_CN/latest/tutorial/01_introduction_to_model_deployment.html),了解有关概念。
现在,让我们对原来的 SRCNN 模型做一些小的修改,体验一下模型动态化对模型部署造成的困难,并学习解决该问题的一种方法。
@@ -38,7 +38,7 @@ def init_torch_model():
现在,假设我们要做一个超分辨率的应用。我们的用户希望图片的放大倍数能够自由设置。而我们交给用户的,只有一个 .onnx 文件和运行超分辨率模型的应用程序。我们在不修改 .onnx 文件的前提下改变放大倍数。
-因此,我们必须修改原来的模型,令模型的放大倍数变成推理时的输入。在[第一章](https://mmdeploy.readthedocs.io/zh_CN/1.x/tutorial/01_introduction_to_model_deployment.html)中的 Python 脚本的基础上,我们做一些修改,得到这样的脚本:
+因此,我们必须修改原来的模型,令模型的放大倍数变成推理时的输入。在[第一章](https://mmdeploy.readthedocs.io/zh_CN/latest/tutorial/01_introduction_to_model_deployment.html)中的 Python 脚本的基础上,我们做一些修改,得到这样的脚本:
```python
import torch
@@ -75,7 +75,7 @@ def init_torch_model():
torch_model = SuperResolutionNet()
# Please read the code about downloading 'srcnn.pth' and 'face.png' in
- # https://mmdeploy.readthedocs.io/zh_CN/1.x/tutorial/01_introduction_to_model_deployment.html#pytorch
+ # https://mmdeploy.readthedocs.io/zh_CN/latest/tutorial/01_introduction_to_model_deployment.html#pytorch
state_dict = torch.load('srcnn.pth')['state_dict']
# Adapt the checkpoint