[Fix] Fix unittest of ncnn. (#309)

* fix test_pytorch_functions

* fix test_mmocr_models
pull/1/head
hanrui1sensetime 2021-12-21 18:03:50 +08:00 committed by GitHub
parent c1ed41c465
commit 33bde90744
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 19 additions and 18 deletions

View File

@ -165,7 +165,7 @@ def test_bidirectionallstm(backend: Backend):
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg,
run_with_backend=False)
run_with_backend=True)
if is_backend_output:
model_output = model_outputs.cpu().numpy()
rewrite_output = rewrite_outputs[0].cpu().numpy()
@ -200,7 +200,8 @@ def test_simple_test_of_single_stage_text_detector(backend: Backend):
rewrite_outputs, is_backend_output = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)
deploy_cfg=deploy_cfg,
run_with_backend=True)
if is_backend_output:
rewrite_outputs = rewrite_outputs[0]
@ -254,7 +255,8 @@ def test_crnndecoder(backend: Backend, rnn_flag: bool):
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg,
run_with_backend=False)
run_with_backend=True)
rewrite_outputs = [rewrite_outputs[-1]]
if is_backend_output:
for model_output, rewrite_output in zip(model_outputs,
rewrite_outputs):

View File

@ -42,7 +42,7 @@ def test_get_attribute():
def model_func(tensor):
x = tensor.size()
assert isinstance(x[0], int) and not isinstance(x[0], torch.Tensor)
return x[0] * tensor
return torch.tensor(x)
input = torch.zeros([1, 2, 3, 4])
wrapped_func = WrapFunction(model_func)
@ -50,7 +50,7 @@ def test_get_attribute():
wrapped_func,
model_inputs={'tensor': input},
deploy_cfg=deploy_cfg_ncnn,
run_with_backend=False)
run_with_backend=True)
assert rewrite_outputs is not None, 'Got unexpected rewrite '
'outputs: {}'.format(rewrite_outputs)
@ -71,9 +71,9 @@ def test_group_norm_ncnn():
wrapped_func,
model_inputs={'input': input},
deploy_cfg=deploy_cfg_ncnn,
run_with_backend=False)
run_with_backend=True)
assert np.allclose(model_output, rewrite_output, rtol=1e-03, atol=1e-05)
assert np.allclose(model_output, rewrite_output[0], rtol=1e-03, atol=1e-05)
@backend_checker(Backend.NCNN)
@ -89,9 +89,9 @@ def test_interpolate_static():
wrapped_func,
model_inputs={'input': input},
deploy_cfg=deploy_cfg_ncnn,
run_with_backend=False)
run_with_backend=True)
assert np.allclose(model_output, rewrite_output, rtol=1e-03, atol=1e-05)
assert np.allclose(model_output, rewrite_output[0], rtol=1e-03, atol=1e-05)
@backend_checker(Backend.NCNN)
@ -109,9 +109,9 @@ def test_linear_ncnn():
wrapped_func,
model_inputs={'input': input},
deploy_cfg=deploy_cfg_ncnn,
run_with_backend=False)
run_with_backend=True)
assert np.allclose(model_output, rewrite_output, rtol=1e-03, atol=1e-05)
assert np.allclose(model_output, rewrite_output[0], rtol=1e-03, atol=1e-05)
@backend_checker(Backend.TENSORRT)
@ -127,10 +127,10 @@ def test_repeat_static():
deploy_cfg = get_trt_config(['output'], [1])
rewrite_output, is_backend_ouptut = get_rewrite_outputs(
rewrite_output, is_backend_output = get_rewrite_outputs(
wrapped_func, model_inputs={'input': input}, deploy_cfg=deploy_cfg)
if is_backend_ouptut:
if is_backend_output:
rewrite_output = rewrite_output[0].detach().cpu()
assert np.allclose(
@ -145,7 +145,7 @@ def test_size_of_tensor_static():
def model_func(input):
x = torch.Tensor.size(input)
assert isinstance(x[0], int) and not isinstance(x[0], torch.Tensor)
return x[0] * input
return torch.tensor(x)
input = torch.zeros([1, 2, 3, 4])
wrapped_func = WrapFunction(model_func)
@ -153,7 +153,7 @@ def test_size_of_tensor_static():
wrapped_func,
model_inputs={'input': input},
deploy_cfg=deploy_cfg_ncnn,
run_with_backend=False)
run_with_backend=True)
assert rewrite_outputs is not None, 'Got unexpected rewrite '
'outputs: {}'.format(rewrite_outputs)
@ -181,9 +181,8 @@ class TestTopk:
wrapped_func,
model_inputs={'input': TestTopk.input},
deploy_cfg=deploy_cfg_ncnn,
run_with_backend=False)
assert np.allclose(model_output, output[1], rtol=1e-03, atol=1e-05)
run_with_backend=True)
assert np.allclose(model_output, output[0], rtol=1e-03, atol=1e-05)
@backend_checker(Backend.TENSORRT)
@pytest.mark.parametrize('k', [1, 3, 4])