bump version to 0.10.0 (#1259)
* bump version to 0.10.0 * fix circleci workflow errorpull/1275/head v0.10.0
parent
c5be297a67
commit
4c34ad74a1
|
@ -274,7 +274,7 @@ jobs:
|
|||
- run:
|
||||
name: Inference model by SDK
|
||||
command: |
|
||||
mmdeploy/build/install/example/build/image_classification cpu mmdeploy-models/mmcls/onnxruntime mmclassification/demo/demo.JPEG
|
||||
./mmdeploy/build/bin/image_classification cpu mmdeploy-models/mmcls/onnxruntime mmclassification/demo/demo.JPEG
|
||||
|
||||
|
||||
# See: https://circleci.com/docs/2.0/configuration-reference/#workflows
|
||||
|
|
|
@ -5,7 +5,7 @@ endif ()
|
|||
message(STATUS "CMAKE_INSTALL_PREFIX: ${CMAKE_INSTALL_PREFIX}")
|
||||
|
||||
cmake_minimum_required(VERSION 3.14)
|
||||
project(MMDeploy VERSION 0.9.0)
|
||||
project(MMDeploy VERSION 0.10.0)
|
||||
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
|
||||
|
|
|
@ -21,7 +21,7 @@
|
|||
|
||||
______________________________________________________________________
|
||||
|
||||
This tutorial takes `mmdeploy-0.9.0-windows-amd64-onnxruntime1.8.1.zip` and `mmdeploy-0.9.0-windows-amd64-cuda11.1-tensorrt8.2.3.0.zip` as examples to show how to use the prebuilt packages.
|
||||
This tutorial takes `mmdeploy-0.10.0-windows-amd64-onnxruntime1.8.1.zip` and `mmdeploy-0.10.0-windows-amd64-cuda11.1-tensorrt8.2.3.0.zip` as examples to show how to use the prebuilt packages.
|
||||
|
||||
The directory structure of the prebuilt package is as follows, where the `dist` folder is about model converter, and the `sdk` folder is related to model inference.
|
||||
|
||||
|
@ -80,9 +80,9 @@ In order to use `ONNX Runtime` backend, you should also do the following steps.
|
|||
5. Install `mmdeploy` (Model Converter) and `mmdeploy_python` (SDK Python API).
|
||||
|
||||
```bash
|
||||
# download mmdeploy-0.9.0-windows-amd64-onnxruntime1.8.1.zip
|
||||
pip install .\mmdeploy-0.9.0-windows-amd64-onnxruntime1.8.1\dist\mmdeploy-0.9.0-py38-none-win_amd64.whl
|
||||
pip install .\mmdeploy-0.9.0-windows-amd64-onnxruntime1.8.1\sdk\python\mmdeploy_python-0.9.0-cp38-none-win_amd64.whl
|
||||
# download mmdeploy-0.10.0-windows-amd64-onnxruntime1.8.1.zip
|
||||
pip install .\mmdeploy-0.10.0-windows-amd64-onnxruntime1.8.1\dist\mmdeploy-0.10.0-py38-none-win_amd64.whl
|
||||
pip install .\mmdeploy-0.10.0-windows-amd64-onnxruntime1.8.1\sdk\python\mmdeploy_python-0.10.0-cp38-none-win_amd64.whl
|
||||
```
|
||||
|
||||
:point_right: If you have installed it before, please uninstall it first.
|
||||
|
@ -107,9 +107,9 @@ In order to use `TensorRT` backend, you should also do the following steps.
|
|||
5. Install `mmdeploy` (Model Converter) and `mmdeploy_python` (SDK Python API).
|
||||
|
||||
```bash
|
||||
# download mmdeploy-0.9.0-windows-amd64-cuda11.1-tensorrt8.2.3.0.zip
|
||||
pip install .\mmdeploy-0.9.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\dist\mmdeploy-0.9.0-py38-none-win_amd64.whl
|
||||
pip install .\mmdeploy-0.9.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\sdk\python\mmdeploy_python-0.9.0-cp38-none-win_amd64.whl
|
||||
# download mmdeploy-0.10.0-windows-amd64-cuda11.1-tensorrt8.2.3.0.zip
|
||||
pip install .\mmdeploy-0.10.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\dist\mmdeploy-0.10.0-py38-none-win_amd64.whl
|
||||
pip install .\mmdeploy-0.10.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\sdk\python\mmdeploy_python-0.10.0-cp38-none-win_amd64.whl
|
||||
```
|
||||
|
||||
:point_right: If you have installed it before, please uninstall it first.
|
||||
|
@ -138,7 +138,7 @@ After preparation work, the structure of the current working directory should be
|
|||
|
||||
```
|
||||
..
|
||||
|-- mmdeploy-0.9.0-windows-amd64-onnxruntime1.8.1
|
||||
|-- mmdeploy-0.10.0-windows-amd64-onnxruntime1.8.1
|
||||
|-- mmclassification
|
||||
|-- mmdeploy
|
||||
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
|
||||
|
@ -186,7 +186,7 @@ After installation of mmdeploy-tensorrt prebuilt package, the structure of the c
|
|||
|
||||
```
|
||||
..
|
||||
|-- mmdeploy-0.9.0-windows-amd64-cuda11.1-tensorrt8.2.3.0
|
||||
|-- mmdeploy-0.10.0-windows-amd64-cuda11.1-tensorrt8.2.3.0
|
||||
|-- mmclassification
|
||||
|-- mmdeploy
|
||||
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
|
||||
|
@ -249,8 +249,8 @@ The structure of current working directory:
|
|||
|
||||
```
|
||||
.
|
||||
|-- mmdeploy-0.9.0-windows-amd64-cuda11.1-tensorrt8.2.3.0
|
||||
|-- mmdeploy-0.9.0-windows-amd64-onnxruntime1.8.1
|
||||
|-- mmdeploy-0.10.0-windows-amd64-cuda11.1-tensorrt8.2.3.0
|
||||
|-- mmdeploy-0.10.0-windows-amd64-onnxruntime1.8.1
|
||||
|-- mmclassification
|
||||
|-- mmdeploy
|
||||
|-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
|
||||
|
@ -311,7 +311,7 @@ The following describes how to use the SDK's C API for inference
|
|||
|
||||
1. Build examples
|
||||
|
||||
Under `mmdeploy-0.9.0-windows-amd64-onnxruntime1.8.1\sdk\example` directory
|
||||
Under `mmdeploy-0.10.0-windows-amd64-onnxruntime1.8.1\sdk\example` directory
|
||||
|
||||
```
|
||||
// Path should be modified according to the actual location
|
||||
|
@ -319,7 +319,7 @@ The following describes how to use the SDK's C API for inference
|
|||
cd build
|
||||
cmake ..\cpp -A x64 -T v142 `
|
||||
-DOpenCV_DIR=C:\Deps\opencv\build\x64\vc15\lib `
|
||||
-DMMDeploy_DIR=C:\workspace\mmdeploy-0.9.0-windows-amd64-onnxruntime1.8.1\sdk\lib\cmake\MMDeploy `
|
||||
-DMMDeploy_DIR=C:\workspace\mmdeploy-0.10.0-windows-amd64-onnxruntime1.8.1\sdk\lib\cmake\MMDeploy `
|
||||
-DONNXRUNTIME_DIR=C:\Deps\onnxruntime\onnxruntime-win-gpu-x64-1.8.1
|
||||
|
||||
cmake --build . --config Release
|
||||
|
@ -329,7 +329,7 @@ The following describes how to use the SDK's C API for inference
|
|||
|
||||
:point_right: The purpose is to make the exe find the relevant dll
|
||||
|
||||
If choose to add environment variables, add the runtime libraries path of `mmdeploy` (`mmdeploy-0.9.0-windows-amd64-onnxruntime1.8.1\sdk\bin`) to the `PATH`.
|
||||
If choose to add environment variables, add the runtime libraries path of `mmdeploy` (`mmdeploy-0.10.0-windows-amd64-onnxruntime1.8.1\sdk\bin`) to the `PATH`.
|
||||
|
||||
If choose to copy the dynamic libraries, copy the dll in the bin directory to the same level directory of the just compiled exe (build/Release).
|
||||
|
||||
|
@ -337,7 +337,7 @@ The following describes how to use the SDK's C API for inference
|
|||
|
||||
It is recommended to use `CMD` here.
|
||||
|
||||
Under `mmdeploy-0.9.0-windows-amd64-onnxruntime1.8.1\\sdk\\example\\build\\Release` directory:
|
||||
Under `mmdeploy-0.10.0-windows-amd64-onnxruntime1.8.1\\sdk\\example\\build\\Release` directory:
|
||||
|
||||
```
|
||||
.\image_classification.exe cpu C:\workspace\work_dir\onnx\resnet\ C:\workspace\mmclassification\demo\demo.JPEG
|
||||
|
@ -347,7 +347,7 @@ The following describes how to use the SDK's C API for inference
|
|||
|
||||
1. Build examples
|
||||
|
||||
Under `mmdeploy-0.9.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\\sdk\\example` directory
|
||||
Under `mmdeploy-0.10.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\\sdk\\example` directory
|
||||
|
||||
```
|
||||
// Path should be modified according to the actual location
|
||||
|
@ -355,7 +355,7 @@ The following describes how to use the SDK's C API for inference
|
|||
cd build
|
||||
cmake ..\cpp -A x64 -T v142 `
|
||||
-DOpenCV_DIR=C:\Deps\opencv\build\x64\vc15\lib `
|
||||
-DMMDeploy_DIR=C:\workspace\mmdeploy-0.9.0-windows-amd64-cuda11.1-tensorrt8 2.3.0\sdk\lib\cmake\MMDeploy `
|
||||
-DMMDeploy_DIR=C:\workspace\mmdeploy-0.10.0-windows-amd64-cuda11.1-tensorrt8 2.3.0\sdk\lib\cmake\MMDeploy `
|
||||
-DTENSORRT_DIR=C:\Deps\tensorrt\TensorRT-8.2.3.0 `
|
||||
-DCUDNN_DIR=C:\Deps\cudnn\8.2.1
|
||||
cmake --build . --config Release
|
||||
|
@ -365,7 +365,7 @@ The following describes how to use the SDK's C API for inference
|
|||
|
||||
:point_right: The purpose is to make the exe find the relevant dll
|
||||
|
||||
If choose to add environment variables, add the runtime libraries path of `mmdeploy` (`mmdeploy-0.9.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\sdk\bin`) to the `PATH`.
|
||||
If choose to add environment variables, add the runtime libraries path of `mmdeploy` (`mmdeploy-0.10.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\sdk\bin`) to the `PATH`.
|
||||
|
||||
If choose to copy the dynamic libraries, copy the dll in the bin directory to the same level directory of the just compiled exe (build/Release).
|
||||
|
||||
|
@ -373,7 +373,7 @@ The following describes how to use the SDK's C API for inference
|
|||
|
||||
It is recommended to use `CMD` here.
|
||||
|
||||
Under `mmdeploy-0.9.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\\sdk\\example\\build\\Release` directory
|
||||
Under `mmdeploy-0.10.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\\sdk\\example\\build\\Release` directory
|
||||
|
||||
```
|
||||
.\image_classification.exe cuda C:\workspace\work_dir\trt\resnet C:\workspace\mmclassification\demo\demo.JPEG
|
||||
|
|
|
@ -118,11 +118,11 @@ Take the latest precompiled package as example, you can install it as follows:
|
|||
|
||||
```shell
|
||||
# install MMDeploy
|
||||
wget https://github.com/open-mmlab/mmdeploy/releases/download/v0.9.0/mmdeploy-0.9.0-linux-x86_64-onnxruntime1.8.1.tar.gz
|
||||
tar -zxvf mmdeploy-0.9.0-linux-x86_64-onnxruntime1.8.1.tar.gz
|
||||
cd mmdeploy-0.9.0-linux-x86_64-onnxruntime1.8.1
|
||||
pip install dist/mmdeploy-0.9.0-py3-none-linux_x86_64.whl
|
||||
pip install sdk/python/mmdeploy_python-0.9.0-cp38-none-linux_x86_64.whl
|
||||
wget https://github.com/open-mmlab/mmdeploy/releases/download/v0.10.0/mmdeploy-0.10.0-linux-x86_64-onnxruntime1.8.1.tar.gz
|
||||
tar -zxvf mmdeploy-0.10.0-linux-x86_64-onnxruntime1.8.1.tar.gz
|
||||
cd mmdeploy-0.10.0-linux-x86_64-onnxruntime1.8.1
|
||||
pip install dist/mmdeploy-0.10.0-py3-none-linux_x86_64.whl
|
||||
pip install sdk/python/mmdeploy_python-0.10.0-cp38-none-linux_x86_64.whl
|
||||
cd ..
|
||||
# install inference engine: ONNX Runtime
|
||||
pip install onnxruntime==1.8.1
|
||||
|
@ -139,11 +139,11 @@ export LD_LIBRARY_PATH=$ONNXRUNTIME_DIR/lib:$LD_LIBRARY_PATH
|
|||
|
||||
```shell
|
||||
# install MMDeploy
|
||||
wget https://github.com/open-mmlab/mmdeploy/releases/download/v0.9.0/mmdeploy-0.9.0-linux-x86_64-cuda11.1-tensorrt8.2.3.0.tar.gz
|
||||
tar -zxvf mmdeploy-0.9.0-linux-x86_64-cuda11.1-tensorrt8.2.3.0.tar.gz
|
||||
cd mmdeploy-0.9.0-linux-x86_64-cuda11.1-tensorrt8.2.3.0
|
||||
pip install dist/mmdeploy-0.9.0-py3-none-linux_x86_64.whl
|
||||
pip install sdk/python/mmdeploy_python-0.9.0-cp38-none-linux_x86_64.whl
|
||||
wget https://github.com/open-mmlab/mmdeploy/releases/download/v0.10.0/mmdeploy-0.10.0-linux-x86_64-cuda11.1-tensorrt8.2.3.0.tar.gz
|
||||
tar -zxvf mmdeploy-0.10.0-linux-x86_64-cuda11.1-tensorrt8.2.3.0.tar.gz
|
||||
cd mmdeploy-0.10.0-linux-x86_64-cuda11.1-tensorrt8.2.3.0
|
||||
pip install dist/mmdeploy-0.10.0-py3-none-linux_x86_64.whl
|
||||
pip install sdk/python/mmdeploy_python-0.10.0-cp38-none-linux_x86_64.whl
|
||||
cd ..
|
||||
# install inference engine: TensorRT
|
||||
# !!! Download TensorRT-8.2.3.0 CUDA 11.x tar package from NVIDIA, and extract it to the current directory
|
||||
|
@ -232,7 +232,7 @@ result = inference_model(
|
|||
You can directly run MMDeploy demo programs in the precompiled package to get inference results.
|
||||
|
||||
```shell
|
||||
cd mmdeploy-0.9.0-linux-x86_64-cuda11.1-tensorrt8.2.3.0
|
||||
cd mmdeploy-0.10.0-linux-x86_64-cuda11.1-tensorrt8.2.3.0
|
||||
# run python demo
|
||||
python sdk/example/python/object_detection.py cuda ../mmdeploy_model/faster-rcnn ../mmdetection/demo/demo.jpg
|
||||
# run C/C++ demo
|
||||
|
|
|
@ -23,7 +23,7 @@ ______________________________________________________________________
|
|||
|
||||
目前,`MMDeploy`在`Windows`平台下提供`TensorRT`以及`ONNX Runtime`两种预编译包,可以从[Releases](https://github.com/open-mmlab/mmdeploy/releases)获取。
|
||||
|
||||
本篇教程以`mmdeploy-0.9.0-windows-amd64-onnxruntime1.8.1.zip`和`mmdeploy-0.9.0-windows-amd64-cuda11.1-tensorrt8.2.3.0.zip`为例,展示预编译包的使用方法。
|
||||
本篇教程以`mmdeploy-0.10.0-windows-amd64-onnxruntime1.8.1.zip`和`mmdeploy-0.10.0-windows-amd64-cuda11.1-tensorrt8.2.3.0.zip`为例,展示预编译包的使用方法。
|
||||
|
||||
为了方便使用者快速上手,本教程以分类模型(mmclassification)为例,展示两种预编译包的使用方法。
|
||||
|
||||
|
@ -88,9 +88,9 @@ ______________________________________________________________________
|
|||
5. 安装`mmdeploy`(模型转换)以及`mmdeploy_python`(模型推理Python API)的预编译包
|
||||
|
||||
```bash
|
||||
# 先下载 mmdeploy-0.9.0-windows-amd64-onnxruntime1.8.1.zip
|
||||
pip install .\mmdeploy-0.9.0-windows-amd64-onnxruntime1.8.1\dist\mmdeploy-0.9.0-py38-none-win_amd64.whl
|
||||
pip install .\mmdeploy-0.9.0-windows-amd64-onnxruntime1.8.1\sdk\python\mmdeploy_python-0.9.0-cp38-none-win_amd64.whl
|
||||
# 先下载 mmdeploy-0.10.0-windows-amd64-onnxruntime1.8.1.zip
|
||||
pip install .\mmdeploy-0.10.0-windows-amd64-onnxruntime1.8.1\dist\mmdeploy-0.10.0-py38-none-win_amd64.whl
|
||||
pip install .\mmdeploy-0.10.0-windows-amd64-onnxruntime1.8.1\sdk\python\mmdeploy_python-0.10.0-cp38-none-win_amd64.whl
|
||||
```
|
||||
|
||||
:point_right: 如果之前安装过,需要先卸载后再安装。
|
||||
|
@ -115,9 +115,9 @@ ______________________________________________________________________
|
|||
5. 安装`mmdeploy`(模型转换)以及`mmdeploy_python`(模型推理Python API)的预编译包
|
||||
|
||||
```bash
|
||||
# 先下载 mmdeploy-0.9.0-windows-amd64-cuda11.1-tensorrt8.2.3.0.zip
|
||||
pip install .\mmdeploy-0.9.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\dist\mmdeploy-0.9.0-py38-none-win_amd64.whl
|
||||
pip install .\mmdeploy-0.9.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\sdk\python\mmdeploy_python-0.9.0-cp38-none-win_amd64.whl
|
||||
# 先下载 mmdeploy-0.10.0-windows-amd64-cuda11.1-tensorrt8.2.3.0.zip
|
||||
pip install .\mmdeploy-0.10.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\dist\mmdeploy-0.10.0-py38-none-win_amd64.whl
|
||||
pip install .\mmdeploy-0.10.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\sdk\python\mmdeploy_python-0.10.0-cp38-none-win_amd64.whl
|
||||
```
|
||||
|
||||
:point_right: 如果之前安装过,需要先卸载后再安装
|
||||
|
@ -146,7 +146,7 @@ ______________________________________________________________________
|
|||
|
||||
```
|
||||
..
|
||||
|-- mmdeploy-0.9.0-windows-amd64-onnxruntime1.8.1
|
||||
|-- mmdeploy-0.10.0-windows-amd64-onnxruntime1.8.1
|
||||
|-- mmclassification
|
||||
|-- mmdeploy
|
||||
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
|
||||
|
@ -194,7 +194,7 @@ export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)
|
|||
|
||||
```
|
||||
..
|
||||
|-- mmdeploy-0.9.0-windows-amd64-cuda11.1-tensorrt8.2.3.0
|
||||
|-- mmdeploy-0.10.0-windows-amd64-cuda11.1-tensorrt8.2.3.0
|
||||
|-- mmclassification
|
||||
|-- mmdeploy
|
||||
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
|
||||
|
@ -257,8 +257,8 @@ export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)
|
|||
|
||||
```
|
||||
.
|
||||
|-- mmdeploy-0.9.0-windows-amd64-cuda11.1-tensorrt8.2.3.0
|
||||
|-- mmdeploy-0.9.0-windows-amd64-onnxruntime1.8.1
|
||||
|-- mmdeploy-0.10.0-windows-amd64-cuda11.1-tensorrt8.2.3.0
|
||||
|-- mmdeploy-0.10.0-windows-amd64-onnxruntime1.8.1
|
||||
|-- mmclassification
|
||||
|-- mmdeploy
|
||||
|-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
|
||||
|
@ -327,7 +327,7 @@ python .\mmdeploy\demo\python\image_classification.py cpu .\work_dir\onnx\resnet
|
|||
|
||||
1. 编译 examples
|
||||
|
||||
在`mmdeploy-0.9.0-windows-amd64-onnxruntime1.8.1\sdk\example`目录下
|
||||
在`mmdeploy-0.10.0-windows-amd64-onnxruntime1.8.1\sdk\example`目录下
|
||||
|
||||
```
|
||||
// 部分路径根据实际位置进行修改
|
||||
|
@ -335,7 +335,7 @@ python .\mmdeploy\demo\python\image_classification.py cpu .\work_dir\onnx\resnet
|
|||
cd build
|
||||
cmake ..\cpp -A x64 -T v142 `
|
||||
-DOpenCV_DIR=C:\Deps\opencv\build\x64\vc15\lib `
|
||||
-DMMDeploy_DIR=C:\workspace\mmdeploy-0.9.0-windows-amd64-onnxruntime1.8.1\sdk\lib\cmake\MMDeploy `
|
||||
-DMMDeploy_DIR=C:\workspace\mmdeploy-0.10.0-windows-amd64-onnxruntime1.8.1\sdk\lib\cmake\MMDeploy `
|
||||
-DONNXRUNTIME_DIR=C:\Deps\onnxruntime\onnxruntime-win-gpu-x64-1.8.1
|
||||
|
||||
cmake --build . --config Release
|
||||
|
@ -345,7 +345,7 @@ python .\mmdeploy\demo\python\image_classification.py cpu .\work_dir\onnx\resnet
|
|||
|
||||
:point_right: 目的是使exe运行时可以正确找到相关dll
|
||||
|
||||
若选择添加环境变量,则将`mmdeploy`的运行时库路径(`mmdeploy-0.9.0-windows-amd64-onnxruntime1.8.1\sdk\bin`)添加到PATH,可参考onnxruntime的添加过程。
|
||||
若选择添加环境变量,则将`mmdeploy`的运行时库路径(`mmdeploy-0.10.0-windows-amd64-onnxruntime1.8.1\sdk\bin`)添加到PATH,可参考onnxruntime的添加过程。
|
||||
|
||||
若选择拷贝动态库,而将bin目录中的dll拷贝到刚才编译出的exe(build/Release)的同级目录下。
|
||||
|
||||
|
@ -353,7 +353,7 @@ python .\mmdeploy\demo\python\image_classification.py cpu .\work_dir\onnx\resnet
|
|||
|
||||
这里建议使用cmd,这样如果exe运行时如果找不到相关的dll的话会有弹窗
|
||||
|
||||
在mmdeploy-0.9.0-windows-amd64-onnxruntime1.8.1\\sdk\\example\\build\\Release目录下:
|
||||
在mmdeploy-0.10.0-windows-amd64-onnxruntime1.8.1\\sdk\\example\\build\\Release目录下:
|
||||
|
||||
```
|
||||
.\image_classification.exe cpu C:\workspace\work_dir\onnx\resnet\ C:\workspace\mmclassification\demo\demo.JPEG
|
||||
|
@ -363,7 +363,7 @@ python .\mmdeploy\demo\python\image_classification.py cpu .\work_dir\onnx\resnet
|
|||
|
||||
1. 编译 examples
|
||||
|
||||
在mmdeploy-0.9.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\\sdk\\example目录下
|
||||
在mmdeploy-0.10.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\\sdk\\example目录下
|
||||
|
||||
```
|
||||
// 部分路径根据所在硬盘的位置进行修改
|
||||
|
@ -371,7 +371,7 @@ python .\mmdeploy\demo\python\image_classification.py cpu .\work_dir\onnx\resnet
|
|||
cd build
|
||||
cmake ..\cpp -A x64 -T v142 `
|
||||
-DOpenCV_DIR=C:\Deps\opencv\build\x64\vc15\lib `
|
||||
-DMMDeploy_DIR=C:\workspace\mmdeploy-0.9.0-windows-amd64-cuda11.1-tensorrt8 2.3.0\sdk\lib\cmake\MMDeploy `
|
||||
-DMMDeploy_DIR=C:\workspace\mmdeploy-0.10.0-windows-amd64-cuda11.1-tensorrt8 2.3.0\sdk\lib\cmake\MMDeploy `
|
||||
-DTENSORRT_DIR=C:\Deps\tensorrt\TensorRT-8.2.3.0 `
|
||||
-DCUDNN_DIR=C:\Deps\cudnn\8.2.1
|
||||
cmake --build . --config Release
|
||||
|
@ -381,7 +381,7 @@ python .\mmdeploy\demo\python\image_classification.py cpu .\work_dir\onnx\resnet
|
|||
|
||||
:point_right: 目的是使exe运行时可以正确找到相关dll
|
||||
|
||||
若选择添加环境变量,则将`mmdeploy`的运行时库路径(`mmdeploy-0.9.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\sdk\bin`)添加到PATH,可参考onnxruntime的添加过程。
|
||||
若选择添加环境变量,则将`mmdeploy`的运行时库路径(`mmdeploy-0.10.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\sdk\bin`)添加到PATH,可参考onnxruntime的添加过程。
|
||||
|
||||
若选择拷贝动态库,而将bin目录中的dll拷贝到刚才编译出的exe(build/Release)的同级目录下。
|
||||
|
||||
|
@ -389,7 +389,7 @@ python .\mmdeploy\demo\python\image_classification.py cpu .\work_dir\onnx\resnet
|
|||
|
||||
这里建议使用cmd,这样如果exe运行时如果找不到相关的dll的话会有弹窗
|
||||
|
||||
在mmdeploy-0.9.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\\sdk\\example\\build\\Release目录下:
|
||||
在mmdeploy-0.10.0-windows-amd64-cuda11.1-tensorrt8.2.3.0\\sdk\\example\\build\\Release目录下:
|
||||
|
||||
```
|
||||
.\image_classification.exe cuda C:\workspace\work_dir\trt\resnet C:\workspace\mmclassification\demo\demo.JPEG
|
||||
|
|
|
@ -113,11 +113,11 @@ mim install mmcv-full
|
|||
|
||||
```shell
|
||||
# 安装 MMDeploy ONNX Runtime 自定义算子库和推理 SDK
|
||||
wget https://github.com/open-mmlab/mmdeploy/releases/download/v0.9.0/mmdeploy-0.9.0-linux-x86_64-onnxruntime1.8.1.tar.gz
|
||||
tar -zxvf mmdeploy-0.9.0-linux-x86_64-onnxruntime1.8.1.tar.gz
|
||||
cd mmdeploy-0.9.0-linux-x86_64-onnxruntime1.8.1
|
||||
pip install dist/mmdeploy-0.9.0-py3-none-linux_x86_64.whl
|
||||
pip install sdk/python/mmdeploy_python-0.9.0-cp38-none-linux_x86_64.whl
|
||||
wget https://github.com/open-mmlab/mmdeploy/releases/download/v0.10.0/mmdeploy-0.10.0-linux-x86_64-onnxruntime1.8.1.tar.gz
|
||||
tar -zxvf mmdeploy-0.10.0-linux-x86_64-onnxruntime1.8.1.tar.gz
|
||||
cd mmdeploy-0.10.0-linux-x86_64-onnxruntime1.8.1
|
||||
pip install dist/mmdeploy-0.10.0-py3-none-linux_x86_64.whl
|
||||
pip install sdk/python/mmdeploy_python-0.10.0-cp38-none-linux_x86_64.whl
|
||||
cd ..
|
||||
# 安装推理引擎 ONNX Runtime
|
||||
pip install onnxruntime==1.8.1
|
||||
|
@ -134,11 +134,11 @@ export LD_LIBRARY_PATH=$ONNXRUNTIME_DIR/lib:$LD_LIBRARY_PATH
|
|||
|
||||
```shell
|
||||
# 安装 MMDeploy TensorRT 自定义算子库和推理 SDK
|
||||
wget https://github.com/open-mmlab/mmdeploy/releases/download/v0.9.0/mmdeploy-0.9.0-linux-x86_64-cuda11.1-tensorrt8.2.3.0.tar.gz
|
||||
tar -zxvf mmdeploy-0.9.0-linux-x86_64-cuda11.1-tensorrt8.2.3.0.tar.gz
|
||||
cd mmdeploy-0.9.0-linux-x86_64-cuda11.1-tensorrt8.2.3.0
|
||||
pip install dist/mmdeploy-0.9.0-py3-none-linux_x86_64.whl
|
||||
pip install sdk/python/mmdeploy_python-0.9.0-cp38-none-linux_x86_64.whl
|
||||
wget https://github.com/open-mmlab/mmdeploy/releases/download/v0.10.0/mmdeploy-0.10.0-linux-x86_64-cuda11.1-tensorrt8.2.3.0.tar.gz
|
||||
tar -zxvf mmdeploy-0.10.0-linux-x86_64-cuda11.1-tensorrt8.2.3.0.tar.gz
|
||||
cd mmdeploy-0.10.0-linux-x86_64-cuda11.1-tensorrt8.2.3.0
|
||||
pip install dist/mmdeploy-0.10.0-py3-none-linux_x86_64.whl
|
||||
pip install sdk/python/mmdeploy_python-0.10.0-cp38-none-linux_x86_64.whl
|
||||
cd ..
|
||||
# 安装推理引擎 TensorRT
|
||||
# !!! 从 NVIDIA 官网下载 TensorRT-8.2.3.0 CUDA 11.x 安装包并解压到当前目录
|
||||
|
@ -226,7 +226,7 @@ result = inference_model(
|
|||
你可以直接运行预编译包中的 demo 程序,输入 SDK Model 和图像,进行推理,并查看推理结果。
|
||||
|
||||
```shell
|
||||
cd mmdeploy-0.9.0-linux-x86_64-cuda11.1-tensorrt8.2.3.0
|
||||
cd mmdeploy-0.10.0-linux-x86_64-cuda11.1-tensorrt8.2.3.0
|
||||
# 运行 python demo
|
||||
python sdk/example/python/object_detection.py cuda ../mmdeploy_model/faster-rcnn ../mmdetection/demo/demo.jpg
|
||||
# 运行 C/C++ demo
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from typing import Tuple
|
||||
|
||||
__version__ = '0.9.0'
|
||||
__version__ = '0.10.0'
|
||||
short_version = __version__
|
||||
|
||||
|
||||
|
|
|
@ -1,2 +1,2 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
__version__ = '0.9.0'
|
||||
__version__ = '0.10.0'
|
||||
|
|
Loading…
Reference in New Issue