Fix get-started rendering issues in readthedocs (#740)

* fix mermaid markdown rendering issue in readthedocs

* fix error in C++ example

* fix error in c++ example in zh_cn get_started doc
pull/754/head
lvhan028 2022-07-14 11:17:13 +08:00 committed by GitHub
parent dace58e844
commit 71d085b1a6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 10 additions and 6 deletions

View File

@ -55,6 +55,7 @@ extensions = [
'sphinx_markdown_tables',
'myst_parser',
'sphinx_copybutton',
'sphinxcontrib.mermaid'
] # yapf: disable
autodoc_mock_imports = ['tensorrt']

View File

@ -244,7 +244,7 @@ cv2.imwrite('output_detection.png', img)
You can find more examples from [here](https://github.com/open-mmlab/mmdeploy/tree/master/demo/python).
```{note}
If you build MMDeploy from the source, please add ${MMDEPLOY_DIR}/build/lib to the environment variable PYTHONPATH.
If you build MMDeploy from source, please add ${MMDEPLOY_DIR}/build/lib to the environment variable PYTHONPATH.
Otherwise, you will run into an error like ModuleNotFoundError: No module named 'mmdeploy_python'
```
@ -252,7 +252,7 @@ Otherwise, you will run into an error like ModuleNotFoundError: No module nam
Using SDK C API should follow next pattern,
```mermaid
```{mermaid}
graph LR
A[create inference handle] --> B(read image)
B --> C(apply handle)
@ -304,7 +304,7 @@ int main() {
cv::Point{(int)box.right, (int)box.bottom}, cv::Scalar{0, 255, 0});
}
cv::imwrite('output_detection.png', img);
cv::imwrite("output_detection.png", img);
// destroy result buffer
mmdeploy_detector_release_result(bboxes, res_count, 1);

View File

@ -14,7 +14,7 @@
以 ncnn backend 为例,完整的工作流如下:
```mermaid
```{mermaid}
flowchart TD;
torch模型-->非标准onnx;
非标准onnx-->ncnn-fp32;

View File

@ -56,6 +56,7 @@ extensions = [
'sphinx_markdown_tables',
'myst_parser',
'sphinx_copybutton',
'sphinxcontrib.mermaid'
] # yapf: disable
autodoc_mock_imports = ['tensorrt']

View File

@ -251,7 +251,7 @@ cv2.imwrite('output_detection.png', img)
使用 C API 进行模型推理的流程符合下面的模式:
```mermaid
```{mermaid}
graph LR
A[创建推理句柄] --> B(读取图像)
B --> C(应用句柄进行推理)
@ -303,7 +303,7 @@ int main() {
cv::Point{(int)box.right, (int)box.bottom}, cv::Scalar{0, 255, 0});
}
cv::imwrite('output_detection.png', img);
cv::imwrite("output_detection.png", img);
// 销毁结果
mmdeploy_detector_release_result(bboxes, res_count, 1);

View File

@ -7,3 +7,4 @@ recommonmark
sphinx==4.0.2
sphinx-copybutton
sphinx_markdown_tables
sphinxcontrib-mermaid

View File

@ -2,4 +2,5 @@ h5py
mmcv
onnx>=1.8.0
opencv-python==4.5.4.60
sphinxcontrib-mermaid
torch