mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
[Docs] Add mmaction2 sphinx-doc link (#1541)
* add mmaction2 sphinx doc * consistent with other doc formats * change title * fix ci * add missing coreml sphinx doc
This commit is contained in:
parent
05ed8e16ea
commit
c72f2eaa31
@ -1,187 +1,11 @@
|
||||
# MMAction2 Deployment
|
||||
|
||||
- [MMAction2 Deployment](#mmaction2-deployment)
|
||||
- [Installation](#installation)
|
||||
- [Install mmaction2](#install-mmaction2)
|
||||
- [Install mmdeploy](#install-mmdeploy)
|
||||
- [Convert model](#convert-model)
|
||||
- [Convert video recognition model](#convert-video-recognition-model)
|
||||
- [Model specification](#model-specification)
|
||||
- [Model Inference](#model-inference)
|
||||
- [Backend model inference](#backend-model-inference)
|
||||
- [SDK model inference](#sdk-model-inference)
|
||||
- [Video recognition SDK model inference](#video-recognition-sdk-model-inference)
|
||||
- [Supported models](#supported-models)
|
||||
|
||||
______________________________________________________________________
|
||||
# MMAction2 Support
|
||||
|
||||
[MMAction2](https://github.com/open-mmlab/mmaction2) is an open-source toolbox for video understanding based on PyTorch. It is a part of the [OpenMMLab](https://openmmlab.com) project.
|
||||
|
||||
## Installation
|
||||
|
||||
### Install mmaction2
|
||||
## Install mmaction2
|
||||
|
||||
Please follow the [installation guide](https://github.com/open-mmlab/mmaction2#installation) to install mmaction2.
|
||||
|
||||
### Install mmdeploy
|
||||
|
||||
There are several methods to install mmdeploy, among which you can choose an appropriate one according to your target platform and device.
|
||||
|
||||
**Method I:** Install precompiled package
|
||||
|
||||
You can download the latest release package from [here](https://github.com/open-mmlab/mmdeploy/releases)
|
||||
|
||||
**Method II:** Build using scripts
|
||||
|
||||
If your target platform is **Ubuntu 18.04 or later version**, we encourage you to run
|
||||
[scripts](../01-how-to-build/build_from_script.md). For example, the following commands install mmdeploy as well as inference engine - `ONNX Runtime`.
|
||||
|
||||
```shell
|
||||
git clone --recursive https://github.com/open-mmlab/mmdeploy.git
|
||||
cd mmdeploy
|
||||
python3 tools/scripts/build_ubuntu_x64_ort.py $(nproc)
|
||||
export PYTHONPATH=$(pwd)/build/lib:$PYTHONPATH
|
||||
export LD_LIBRARY_PATH=$(pwd)/../mmdeploy-dep/onnxruntime-linux-x64-1.8.1/lib/:$LD_LIBRARY_PATH
|
||||
```
|
||||
|
||||
**Method III:** Build from source
|
||||
|
||||
If neither **I** nor **II** meets your requirements, [building mmdeploy from source](../01-how-to-build/build_from_source.md) is the last option.
|
||||
|
||||
## Convert model
|
||||
|
||||
You can use [tools/deploy.py](https://github.com/open-mmlab/mmdeploy/blob/master/tools/deploy.py) to convert mmaction2 models to the specified backend models. Its detailed usage can be learned from [here](https://github.com/open-mmlab/mmdeploy/blob/master/docs/en/02-how-to-run/convert_model.md#usage).
|
||||
|
||||
When using `tools/deploy.py`, it is crucial to specify the correct deployment config. We've already provided builtin deployment config [files](https://github.com/open-mmlab/mmdeploy/tree/master/configs/mmaction) of all supported backends for mmaction2, under which the config file path follows the pattern:
|
||||
|
||||
```
|
||||
{task}/{task}_{backend}-{precision}_{static | dynamic}_{shape}.py
|
||||
```
|
||||
|
||||
其中:
|
||||
|
||||
- **{task}:** task in mmaction2.
|
||||
- **{backend}:** inference backend, such as onnxruntime, tensorrt, pplnn, ncnn, openvino, coreml etc.
|
||||
- **{precision}:** fp16, int8. When it's empty, it means fp32
|
||||
- **{static | dynamic}:** static shape or dynamic shape
|
||||
- **{shape}:** input shape or shape range of a model
|
||||
- **{2d/3d}:** model type
|
||||
|
||||
In the next part,we will take `tsn` model from `video recognition` task as an example, showing how to convert them to onnx model that can be inferred by ONNX Runtime.
|
||||
|
||||
### Convert video recognition model
|
||||
|
||||
```shell
|
||||
cd mmdeploy
|
||||
|
||||
# download tsn model from mmaction2 model zoo
|
||||
mim download mmaction2 --config tsn_r50_1x1x3_100e_kinetics400_rgb --dest .
|
||||
|
||||
# convert mmaction2 model to onnxruntime model with dynamic shape
|
||||
python tools/deploy.py \
|
||||
configs/mmaction/video-recognition/video-recognition_onnxruntime_static.py \
|
||||
tsn_r50_1x1x3_100e_kinetics400_rgb.py \
|
||||
tsn_r50_256p_1x1x3_100e_kinetics400_rgb_20200725-22592236.pth \
|
||||
tests/data/arm_wrestling.mp4 \
|
||||
--work-dir mmdeploy_models/mmaction/tsn/ort \
|
||||
--device cpu \
|
||||
--show \
|
||||
--dump-info
|
||||
```
|
||||
|
||||
## Model specification
|
||||
|
||||
Before moving on to model inference chapter, let's know more about the converted model structure which is very important for model inference.
|
||||
|
||||
The converted model locates in the working directory like `mmdeploy_models/mmaction/tsn/ort` in the previous example. It includes:
|
||||
|
||||
```
|
||||
mmdeploy_models/mmaction/tsn/ort
|
||||
├── deploy.json
|
||||
├── detail.json
|
||||
├── end2end.onnx
|
||||
└── pipeline.json
|
||||
```
|
||||
|
||||
in which,
|
||||
|
||||
- **end2end.onnx**: backend model which can be inferred by ONNX Runtime
|
||||
- \***.json**: the necessary information for mmdeploy SDK
|
||||
|
||||
The whole package **mmdeploy_models/mmaction/tsn/ort** is defined as **mmdeploy SDK model**, i.e., **mmdeploy SDK model** includes both backend model and inference meta information.
|
||||
|
||||
## Model Inference
|
||||
|
||||
### Backend model inference
|
||||
|
||||
Take the previous converted `end2end.onnx` mode of `tsn` as an example, you can use the following code to inference the model and visualize the results.
|
||||
|
||||
```python
|
||||
from mmdeploy.apis.utils import build_task_processor
|
||||
from mmdeploy.utils import get_input_shape, load_config
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
deploy_cfg = 'configs/mmaction/video-recognition/video-recognition_onnxruntime_static.py'
|
||||
model_cfg = 'tsn_r50_1x1x3_100e_kinetics400_rgb.py'
|
||||
device = 'cpu'
|
||||
backend_model = ['./mmdeploy_models/mmaction/tsn/ort/end2end.onnx']
|
||||
image = 'tests/data/arm_wrestling.mp4'
|
||||
|
||||
# read deploy_cfg and model_cfg
|
||||
deploy_cfg, model_cfg = load_config(deploy_cfg, model_cfg)
|
||||
|
||||
# build task and backend model
|
||||
task_processor = build_task_processor(model_cfg, deploy_cfg, device)
|
||||
model = task_processor.init_backend_model(backend_model)
|
||||
|
||||
# process input image
|
||||
input_shape = get_input_shape(deploy_cfg)
|
||||
model_inputs, _ = task_processor.create_input(image, input_shape)
|
||||
|
||||
# do model inference
|
||||
with torch.no_grad():
|
||||
result = task_processor.run_inference(model, model_inputs)
|
||||
|
||||
# show top5-results
|
||||
result = np.array(result[0])
|
||||
top_index = np.argsort(result)[::-1]
|
||||
for i in range(5):
|
||||
index = top_index[i]
|
||||
print(index, result[index])
|
||||
```
|
||||
|
||||
### SDK model inference
|
||||
|
||||
Given the above SDK model of `tsn` you can also perform SDK model inference like following,
|
||||
|
||||
#### Video recognition SDK model inference
|
||||
|
||||
```python
|
||||
from mmdeploy_python import VideoRecognizer
|
||||
import cv2
|
||||
|
||||
# refer to demo/python/video_recognition.py
|
||||
# def SampleFrames(cap, clip_len, frame_interval, num_clips):
|
||||
# ...
|
||||
|
||||
cap = cv2.VideoCapture('tests/data/arm_wrestling.mp4')
|
||||
|
||||
clips, info = SampleFrames(cap, 1, 1, 25)
|
||||
|
||||
# create a recognizer
|
||||
recognizer = VideoRecognizer(model_path='./mmdeploy_models/mmaction/tsn/ort', device_name='cpu', device_id=0)
|
||||
# perform inference
|
||||
result = recognizer(clips, info)
|
||||
# show inference result
|
||||
for label_id, score in result:
|
||||
print(label_id, score)
|
||||
```
|
||||
|
||||
Besides python API, mmdeploy SDK also provides other FFI (Foreign Function Interface), such as C, C++, C#, Java and so on. You can learn their usage from [demos](https://github.com/open-mmlab/mmdeploy/demo).
|
||||
|
||||
> MMAction2 only API of c, c++ and python for now.
|
||||
|
||||
## Supported models
|
||||
|
||||
| Model | TorchScript | ONNX Runtime | TensorRT | ncnn | PPLNN | OpenVINO |
|
||||
|
@ -50,6 +50,7 @@ You can switch between Chinese and English documents in the lower-left corner of
|
||||
04-supported-codebases/mmpose.md
|
||||
04-supported-codebases/mmdet3d.md
|
||||
04-supported-codebases/mmrotate.md
|
||||
04-supported-codebases/mmaction2.md
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
@ -63,6 +64,7 @@ You can switch between Chinese and English documents in the lower-left corner of
|
||||
05-supported-backends/tensorrt.md
|
||||
05-supported-backends/torchscript.md
|
||||
05-supported-backends/rknn.md
|
||||
05-supported-backends/coreml.md
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
|
@ -1,190 +1,11 @@
|
||||
# MMAction2 模型部署
|
||||
|
||||
- [MMAction2 模型部署](#mmaction2-模型部署)
|
||||
- [安装](#安装)
|
||||
- [安装 mmaction2](#安装-mmaction2)
|
||||
- [安装 mmdeploy](#安装-mmdeploy)
|
||||
- [模型转换](#模型转换)
|
||||
- [视频分类任务模型转换](#视频分类任务模型转换)
|
||||
- [模型规范](#模型规范)
|
||||
- [模型推理](#模型推理)
|
||||
- [后端模型推理](#后端模型推理)
|
||||
- [SDK 模型推理](#sdk-模型推理)
|
||||
- [视频分类 SDK 模型推理](#视频分类-sdk-模型推理)
|
||||
- [模型支持列表](#模型支持列表)
|
||||
|
||||
______________________________________________________________________
|
||||
# mmction2 模型支持列表
|
||||
|
||||
[MMAction2](https://github.com/open-mmlab/mmaction2)是一款基于 PyTorch 的视频理解开源工具箱,是[OpenMMLab](https://openmmlab.com)项目的成员之一。
|
||||
|
||||
## 安装
|
||||
|
||||
### 安装 mmaction2
|
||||
## 安装 mmaction2
|
||||
|
||||
请参考[官网安装指南](https://github.com/open-mmlab/mmaction2#installation).
|
||||
|
||||
### 安装 mmdeploy
|
||||
|
||||
mmdeploy 有以下几种安装方式:
|
||||
|
||||
**方式一:** 安装预编译包
|
||||
|
||||
通过此[链接](https://github.com/open-mmlab/mmdeploy/releases)获取最新的预编译包
|
||||
|
||||
**方式二:** 一键式脚本安装
|
||||
|
||||
如果部署平台是 **Ubuntu 18.04 及以上版本**, 请参考[脚本安装说明](../01-how-to-build/build_from_script.md),完成安装过程。
|
||||
比如,以下命令可以安装 mmdeploy 以及配套的推理引擎——`ONNX Runtime`.
|
||||
|
||||
```shell
|
||||
git clone --recursive https://github.com/open-mmlab/mmdeploy.git
|
||||
cd mmdeploy
|
||||
python3 tools/scripts/build_ubuntu_x64_ort.py $(nproc)
|
||||
export PYTHONPATH=$(pwd)/build/lib:$PYTHONPATH
|
||||
export LD_LIBRARY_PATH=$(pwd)/../mmdeploy-dep/onnxruntime-linux-x64-1.8.1/lib/:$LD_LIBRARY_PATH
|
||||
```
|
||||
|
||||
**方式三:** 源码安装
|
||||
|
||||
在方式一、二都满足不了的情况下,请参考[源码安装说明](../01-how-to-build/build_from_source.md) 安装 mmdeploy 以及所需推理引擎。
|
||||
|
||||
## 模型转换
|
||||
|
||||
你可以使用 [tools/deploy.py](https://github.com/open-mmlab/mmdeploy/blob/master/tools/deploy.py) 把 mmaction2 模型一键式转换为推理后端模型。
|
||||
该工具的详细使用说明请参考[这里](https://github.com/open-mmlab/mmdeploy/blob/master/docs/en/02-how-to-run/convert_model.md#usage).
|
||||
|
||||
转换的关键之一是使用正确的配置文件。项目中已内置了各后端部署[配置文件](https://github.com/open-mmlab/mmdeploy/tree/master/configs/mmaction)。
|
||||
文件的命名模式是:
|
||||
|
||||
```
|
||||
{task}/{task}_{backend}-{precision}_{static | dynamic}_{shape}.py
|
||||
```
|
||||
|
||||
其中:
|
||||
|
||||
- **{task}:** mmaction2 中的任务
|
||||
- **{backend}:** 推理后端名称。比如,onnxruntime、tensorrt、pplnn、ncnn、openvino、coreml 等等
|
||||
- **{precision}:** 推理精度。比如,fp16、int8。不填表示 fp32
|
||||
- **{static | dynamic}:** 动态、静态 shape
|
||||
- **{shape}:** 模型输入的 shape 或者 shape 范围
|
||||
- **{2d/3d}:** 表示模型的类别
|
||||
|
||||
以下,我们将演示如何把视频分类任务中 `tsn` 模型转换为 onnx 模型。
|
||||
|
||||
### 视频分类任务模型转换
|
||||
|
||||
```shell
|
||||
cd mmdeploy
|
||||
|
||||
# download tsn model from mmaction2 model zoo
|
||||
mim download mmaction2 --config tsn_r50_1x1x3_100e_kinetics400_rgb --dest .
|
||||
|
||||
# convert mmaction2 model to onnxruntime model with dynamic shape
|
||||
python tools/deploy.py \
|
||||
configs/mmaction/video-recognition/video-recognition_onnxruntime_static.py \
|
||||
tsn_r50_1x1x3_100e_kinetics400_rgb.py \
|
||||
tsn_r50_256p_1x1x3_100e_kinetics400_rgb_20200725-22592236.pth \
|
||||
tests/data/arm_wrestling.mp4 \
|
||||
--work-dir mmdeploy_models/mmaction/tsn/ort \
|
||||
--device cpu \
|
||||
--show \
|
||||
--dump-info
|
||||
```
|
||||
|
||||
## 模型规范
|
||||
|
||||
在使用转换后的模型进行推理之前,有必要了解转换结果的结构。 它存放在 `--work-dir` 指定的路路径下。
|
||||
|
||||
上例中的`mmdeploy_models/mmaction/tsn/ort`,结构如下:
|
||||
|
||||
```
|
||||
mmdeploy_models/mmaction/tsn/ort
|
||||
├── deploy.json
|
||||
├── detail.json
|
||||
├── end2end.onnx
|
||||
└── pipeline.json
|
||||
```
|
||||
|
||||
重要的是:
|
||||
|
||||
- **end2end.onnx**: 推理引擎文件。可用 ONNX Runtime 推理
|
||||
- \***.json**: mmdeploy SDK 推理所需的 meta 信息
|
||||
|
||||
整个文件夹被定义为**mmdeploy SDK model**。换言之,**mmdeploy SDK model**既包括推理引擎,也包括推理 meta 信息。
|
||||
|
||||
## 模型推理
|
||||
|
||||
### 后端模型推理
|
||||
|
||||
以上述模型转换后的 `end2end.onnx` 为例,你可以使用如下代码进行推理:
|
||||
|
||||
```python
|
||||
from mmdeploy.apis.utils import build_task_processor
|
||||
from mmdeploy.utils import get_input_shape, load_config
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
deploy_cfg = 'configs/mmaction/video-recognition/video-recognition_onnxruntime_static.py'
|
||||
model_cfg = 'tsn_r50_1x1x3_100e_kinetics400_rgb.py'
|
||||
device = 'cpu'
|
||||
backend_model = ['./mmdeploy_models/mmaction/tsn/ort/end2end.onnx']
|
||||
image = 'tests/data/arm_wrestling.mp4'
|
||||
|
||||
# read deploy_cfg and model_cfg
|
||||
deploy_cfg, model_cfg = load_config(deploy_cfg, model_cfg)
|
||||
|
||||
# build task and backend model
|
||||
task_processor = build_task_processor(model_cfg, deploy_cfg, device)
|
||||
model = task_processor.init_backend_model(backend_model)
|
||||
|
||||
# process input image
|
||||
input_shape = get_input_shape(deploy_cfg)
|
||||
model_inputs, _ = task_processor.create_input(image, input_shape)
|
||||
|
||||
# do model inference
|
||||
with torch.no_grad():
|
||||
result = task_processor.run_inference(model, model_inputs)
|
||||
|
||||
# show top5-results
|
||||
result = np.array(result[0])
|
||||
top_index = np.argsort(result)[::-1]
|
||||
for i in range(5):
|
||||
index = top_index[i]
|
||||
print(index, result[index])
|
||||
```
|
||||
|
||||
### SDK 模型推理
|
||||
|
||||
你也可以参考如下代码,对 SDK model 进行推理:
|
||||
|
||||
#### 视频分类 SDK 模型推理
|
||||
|
||||
```python
|
||||
from mmdeploy_python import VideoRecognizer
|
||||
import cv2
|
||||
|
||||
# refer to demo/python/video_recognition.py
|
||||
# def SampleFrames(cap, clip_len, frame_interval, num_clips):
|
||||
# ...
|
||||
|
||||
cap = cv2.VideoCapture('tests/data/arm_wrestling.mp4')
|
||||
|
||||
clips, info = SampleFrames(cap, 1, 1, 25)
|
||||
|
||||
# create a recognizer
|
||||
recognizer = VideoRecognizer(model_path='./mmdeploy_models/mmaction/tsn/ort', device_name='cpu', device_id=0)
|
||||
# perform inference
|
||||
result = recognizer(clips, info)
|
||||
# show inference result
|
||||
for label_id, score in result:
|
||||
print(label_id, score)
|
||||
```
|
||||
|
||||
除了python API,mmdeploy SDK 还提供了诸如 C、C++、C#、Java等多语言接口。
|
||||
你可以参考[样例](https://github.com/open-mmlab/mmdeploy/tree/master/demo)学习其他语言接口的使用方法。
|
||||
|
||||
> mmaction2 的 C#,Java接口待开发
|
||||
|
||||
## 模型支持列表
|
||||
|
||||
| Model | TorchScript | ONNX Runtime | TensorRT | ncnn | PPLNN | OpenVINO |
|
||||
|
@ -50,6 +50,7 @@
|
||||
04-supported-codebases/mmpose.md
|
||||
04-supported-codebases/mmrotate.md
|
||||
04-supported-codebases/mmseg.md
|
||||
04-supported-codebases/mmaction2.md
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
@ -63,6 +64,7 @@
|
||||
05-supported-backends/snpe.md
|
||||
05-supported-backends/tensorrt.md
|
||||
05-supported-backends/torchscript.md
|
||||
05-supported-backends/coreml.md
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
|
Loading…
x
Reference in New Issue
Block a user