Fit for MMPretrain EfficientFormer (#2108)

* add ef in rgtest metafile

* fix for EfficientFormerClsHead to LinearClsHead

* fix lint

* update benchmark

* fix lint

* fix docs

* fix docs

* add openvino test
pull/2154/head
huayuan4396 2023-06-05 13:59:30 +08:00 committed by GitHub
parent a26945cb07
commit cbfe99505c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 62 additions and 0 deletions

View File

@ -625,6 +625,28 @@ Users can directly test the performance through [how_to_evaluate_a_model.md](../
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<tr>
<td align="center" rowspan="2"><a href="https://github.com/open-mmlab/mmpretrain/blob/main/configs/efficientformer/efficientformer-l1_8xb128_in1k.py">EfficientFormer</a></td>
<td align="center">top-1</td>
<td align="center">80.46</td>
<td align="center">80.45</td>
<td align="center">80.46</td>
<td align="center">80.46</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
</tr>
<tr>
<td align="center">top-5</td>
<td align="center">94.99</td>
<td align="center">94.98</td>
<td align="center">94.99</td>
<td align="center">94.99</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
</tr>
</tbody>
</table>

View File

@ -185,3 +185,4 @@ Besides python API, mmdeploy SDK also provides other FFI (Foreign Function Inter
| [MobileOne](https://github.com/open-mmlab/mmpretrain/tree/main/configs/mobileone) | Y | Y | N | N | ? | N |
| [EfficientNet](https://github.com/open-mmlab/mmpretrain/tree/main/configs/efficientnet) | Y | Y | N | N | ? | N |
| [Conformer](https://github.com/open-mmlab/mmpretrain/tree/main/configs/conformer) | Y | Y | N | N | ? | N |
| [EfficientFormer](https://github.com/open-mmlab/mmpretrain/tree/main/configs/efficientformer) | Y | Y | Y | N | ? | Y |

View File

@ -608,6 +608,7 @@ GPU: ncnn, TensorRT, PPLNN
<td align="center">81.18</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
</tr>
<tr>
<td align="center">top-5</td>
@ -618,6 +619,30 @@ GPU: ncnn, TensorRT, PPLNN
<td align="center">95.61</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<tr>
<td align="center" rowspan="2"><a href="https://github.com/open-mmlab/mmpretrain/blob/main/configs/efficientformer/efficientformer-l1_8xb128_in1k.py">EfficientFormer</a></td>
<td align="center">top-1</td>
<td align="center">80.46</td>
<td align="center">80.45</td>
<td align="center">80.46</td>
<td align="center">80.46</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
</tr>
<tr>
<td align="center">top-5</td>
<td align="center">94.99</td>
<td align="center">94.98</td>
<td align="center">94.99</td>
<td align="center">94.99</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
<td align="center">-</td>
</tr>
</tr>
</tbody>
</table>

View File

@ -190,3 +190,4 @@ for label_id, score in result:
| [MobileOne](https://github.com/open-mmlab/mmpretrain/tree/main/configs/mobileone) | Y | Y | N | N | ? | N |
| [EfficientNet](https://github.com/open-mmlab/mmpretrain/tree/main/configs/efficientnet) | Y | Y | N | N | ? | N |
| [Conformer](https://github.com/open-mmlab/mmpretrain/tree/main/configs/conformer) | Y | Y | N | N | ? | N |
| [EfficientFormer](https://github.com/open-mmlab/mmpretrain/tree/main/configs/efficientformer) | Y | Y | Y | N | ? | Y |

View File

@ -332,6 +332,9 @@ class Classification(BaseTask):
dict: Composed of the postprocess information.
"""
postprocess = self.model_cfg.model.head
if postprocess['type'] == 'EfficientFormerClsHead':
postprocess['type'] = 'LinearClsHead'
if 'topk' not in postprocess:
topk = (1, )
logger = get_root_logger()

View File

@ -237,3 +237,13 @@ models:
pipelines:
- *pipeline_ort_dynamic_fp32
- *pipeline_trt_dynamic_fp32
- name: EfficientFormer
metafile: configs/efficientformer/metafile.yml
model_configs:
- configs/efficientformer/efficientformer-l1_8xb128_in1k.py
pipelines:
- *pipeline_ts_fp32
- *pipeline_ort_dynamic_fp32
- *pipeline_trt_dynamic_fp32
- *pipeline_openvino_dynamic_fp32