diff --git a/docs/en/benchmark.md b/docs/en/benchmark.md index 0ac0164b9..d677a4976 100644 --- a/docs/en/benchmark.md +++ b/docs/en/benchmark.md @@ -179,29 +179,29 @@ Users can directly test the speed through [how_to_measure_performance_of_models. YOLOv3 COCO - 1x3x800x1344 - 94.08 - 10.63 - 24.90 - 40.17 - 24.87 - 40.21 - 47.64 - 20.99 + 1x3x320x320 + 14.76 + 67.76 + 24.92 + 40.13 + 24.92 + 40.13 + 18.07 + 55.35 $MMDET_DIR/configs/yolo/yolov3_d53_320_273e_coco.py SSD-Lite COCO - 1x3x800x1344 - 14.91 - 67.06 - 8.92 - 112.13 - 8.65 - 115.63 - 30.13 - 33.19 + 1x3x320x320 + 8.84 + 113.12 + 9.21 + 108.56 + 8.04 + 124.38 + 19.72 + 50.71 $MMDET_DIR/configs/ssd/ssdlite_mobilenetv2_scratch_600e_coco.py diff --git a/docs/zh_cn/benchmark.md b/docs/zh_cn/benchmark.md index dfbdf7a72..db8dd3aa8 100644 --- a/docs/zh_cn/benchmark.md +++ b/docs/zh_cn/benchmark.md @@ -34,6 +34,7 @@ GPU: TensorRT, PPLNN MMCls TensorRT PPLNN + NCNN @@ -44,8 +45,10 @@ GPU: TensorRT, PPLNN Input fp32 fp16 - in8 + int8 fp16 + SnapDragon888-fp32 + Adreno660-fp32 model config file @@ -57,6 +60,10 @@ GPU: TensorRT, PPLNN FPS latency (ms) FPS + latency (ms) + FPS + latency (ms) + FPS ResNet @@ -70,6 +77,10 @@ GPU: TensorRT, PPLNN 829.66 1.30 768.28 + 33.91 + 29.49 + 25.93 + 38.57 $MMCLS_DIR/configs/resnet/resnet50_b32x8_imagenet.py @@ -84,6 +95,10 @@ GPU: TensorRT, PPLNN 727.42 1.36 737.67 + 133.44 + 7.49 + 69.38 + 14.41 $MMCLS_DIR/configs/resnext/resnext50_32x4d_b32x8_imagenet.py @@ -98,6 +113,10 @@ GPU: TensorRT, PPLNN 662.90 1.91 524.07 + 107.84 + 9.27 + 80.85 + 12.37 $MMCLS_DIR/configs/seresnet/seresnet50_b32x8_imagenet.py @@ -112,6 +131,10 @@ GPU: TensorRT, PPLNN 883.47 4.69 213.33 + 9.55 + 104.71 + 10.66 + 93.81 $MMCLS_DIR/configs/shufflenet_v2/shufflenet_v2_1x_b64x16_linearlr_bn_nowd_imagenet.py @@ -139,7 +162,7 @@ GPU: TensorRT, PPLNN Input fp32 fp16 - in8 + int8 fp16 model config file @@ -156,29 +179,29 @@ GPU: TensorRT, PPLNN YOLOv3 COCO - 1x3x800x1344 - 94.08 - 10.63 - 24.90 - 40.17 - 24.87 - 40.21 - 47.64 - 20.99 + 1x3x320x320 + 14.76 + 67.76 + 24.92 + 40.13 + 24.92 + 40.13 + 18.07 + 55.35 $MMDET_DIR/configs/yolo/yolov3_d53_320_273e_coco.py SSD-Lite COCO - 1x3x800x1344 - 14.91 - 67.06 - 8.92 - 112.13 - 8.65 - 115.63 - 30.13 - 33.19 + 1x3x320x320 + 8.84 + 113.12 + 9.21 + 108.56 + 8.04 + 124.38 + 19.72 + 50.71 $MMDET_DIR/configs/ssd/ssdlite_mobilenetv2_scratch_600e_coco.py @@ -253,6 +276,51 @@ GPU: TensorRT, PPLNN + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
MMDetNCNN
ModelDatasetInputSnapDragon888-fp32Adreno660-fp32model config file
latency (ms)FPSlatency (ms)FPS
MobileNetv2-YOLOv3COCO1x3x320x32048.5720.5966.5515.03$MMDET_DIR/configs/yolo/yolov3_mobilenetv2_mstrain-416_300e_coco.py
SSD-LiteCOCO1x3x320x32044.9122.2766.1915.11$MMDET_DIR/configs/ssd/ssdlite_mobilenetv2_scratch_600e_coco.py
@@ -274,7 +342,7 @@ GPU: TensorRT, PPLNN Input fp32 fp16 - in8 + int8 fp16 model config file @@ -328,6 +396,7 @@ GPU: TensorRT, PPLNN MMOCR TensorRT PPLNN + NCNN @@ -338,8 +407,10 @@ GPU: TensorRT, PPLNN Input fp32 fp16 - in8 + int8 fp16 + SnapDragon888-fp32 + Adreno660-fp32 model config file @@ -351,105 +422,46 @@ GPU: TensorRT, PPLNN FPS latency (ms) FPS + latency (ms) + FPS + latency (ms) + FPS - - YOLOv3 - COCO - 1x3x800x1344 - 94.08 - 10.63 - 24.90 - 40.17 - 24.87 - 40.21 - 47.64 - 20.99 - $MMDET_DIR/configs/yolo/yolov3_d53_320_273e_coco.py - - - SSD-Lite - COCO - 1x3x800x1344 - 14.91 - 67.06 - 8.92 - 112.13 - 8.65 - 115.63 - 30.13 - 33.19 - $MMDET_DIR/configs/ssd/ssdlite_mobilenetv2_scratch_600e_coco.py - - - RetinaNet - COCO - 1x3x800x1344 - 97.09 - 10.30 - 25.79 - 38.78 - 16.88 - 59.23 - 38.34 - 26.08 - $MMDET_DIR/configs/retinanet/retinanet_r50_fpn_1x_coco.py - - - FCOS - COCO - 1x3x800x1344 - 84.06 - 11.90 - 23.15 - 43.20 - 17.68 - 56.57 + + DBNet + ICDAR2015 + 1x3x640x640 + 10.70 + 93.43 + 5.62 + 177.78 + 5.00 + 199.85 + 34.84 + 28.70 - - - $MMDET_DIR/configs/fcos/fcos_r50_caffe_fpn_gn-head_1x_coco.py - - - FSAF - COCO - 1x3x800x1344 - 82.96 - 12.05 - 21.02 - 47.58 - 13.50 - 74.08 - 30.41 - 32.89 - $MMDET_DIR/configs/fsaf/fsaf_r50_fpn_1x_coco.py - - - Faster-RCNN - COCO - 1x3x800x1344 - 88.08 - 11.35 - 26.52 - 37.70 - 19.14 - 52.23 - 65.40 - 15.29 - $MMDET_DIR/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py - - - Mask-RCNN - COCO - 1x3x800x1344 - 320.86 - 3.12 - 241.32 - 4.14 - - - 86.80 - 11.52 - $MMDET_DIR/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py + $MMOCR_DIR/configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py + + CRNN + IIIT5K + 1x1x32x32 + 1.93 + 518.28 + 1.40 + 713.88 + 1.36 + 736.79 + - + - + 10.57 + 94.64 + 20.00 + 50.00 + $MMOCR_DIR/configs/textrecog/crnn/crnn_academic_dataset.py @@ -474,7 +486,7 @@ GPU: TensorRT, PPLNN Input fp32 fp16 - in8 + int8 fp16 model config file