[Refactor] refactor is_available, check_env (#1540)
* refactor is available * remove try catch in apis * fix trt check env * fix ops_info * update default value * remove backend list * optimial pycuda * update requirement, check env for rknnpull/1574/head
parent
5285caf30a
commit
d113a5f1c7
.github/workflows
csrc/mmdeploy/backend_ops/torchscript/ops
mmdeploy
backend
onnxruntime
openvino
torchscript
requirements
tests
test_apis
test_backend
test_codebase/test_mmdet
tools
|
@ -87,4 +87,4 @@ jobs:
|
|||
python3 tools/scripts/build_ubuntu_x64_ncnn.py
|
||||
python3 -m pip install torch==1.8.2 torchvision==0.9.2 --extra-index-url https://download.pytorch.org/whl/lts/1.8/cpu
|
||||
python3 -m pip install mmcv-full==1.5.1 -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.8.0/index.html
|
||||
python3 -c 'import mmdeploy.apis.ncnn as ncnn_api; assert ncnn_api.is_available() and ncnn_api.is_custom_ops_available()'
|
||||
python3 -c 'import mmdeploy.apis.ncnn as ncnn_api; assert ncnn_api.is_available(with_custom_ops=True)'
|
||||
|
|
|
@ -36,7 +36,7 @@ jobs:
|
|||
python3 tools/scripts/build_ubuntu_x64_ort.py
|
||||
python3 -m pip install torch==1.8.2 torchvision==0.9.2 --extra-index-url https://download.pytorch.org/whl/lts/1.8/cpu
|
||||
python3 -m pip install mmcv-full==1.5.1 -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.8.0/index.html
|
||||
python3 -c 'import mmdeploy.apis.onnxruntime as ort_api; assert ort_api.is_available() and ort_api.is_custom_ops_available()'
|
||||
python3 -c 'import mmdeploy.apis.onnxruntime as ort_api; assert ort_api.is_available(with_custom_ops=True)'
|
||||
- name: test mmcls full pipeline
|
||||
run: |
|
||||
pip install openmim
|
||||
|
|
|
@ -31,3 +31,6 @@ mmdeploy_export(${PROJECT_NAME}_obj)
|
|||
mmdeploy_add_module(${PROJECT_NAME} MODULE EXCLUDE "")
|
||||
target_link_libraries(${PROJECT_NAME} PUBLIC ${PROJECT_NAME}_obj)
|
||||
add_library(mmdeploy::torchscript_ops ALIAS ${PROJECT_NAME})
|
||||
|
||||
set(_TORCHJIT_OPS_DIR ${CMAKE_SOURCE_DIR}/mmdeploy/lib)
|
||||
install(TARGETS ${PROJECT_NAME} DESTINATION ${_TORCHJIT_OPS_DIR})
|
||||
|
|
|
@ -1,19 +1,14 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from .calibration import create_calib_input_data
|
||||
from .extract_model import extract_model
|
||||
from .inference import inference_model
|
||||
from .pytorch2onnx import torch2onnx
|
||||
from .pytorch2torchscript import torch2torchscript
|
||||
from .utils import build_task_processor, get_predefined_partition_cfg
|
||||
from .visualize import visualize_model
|
||||
|
||||
# mmcv dependency
|
||||
try:
|
||||
from .calibration import create_calib_input_data
|
||||
from .extract_model import extract_model
|
||||
from .inference import inference_model
|
||||
from .pytorch2onnx import torch2onnx
|
||||
from .pytorch2torchscript import torch2torchscript
|
||||
from .utils import build_task_processor, get_predefined_partition_cfg
|
||||
from .visualize import visualize_model
|
||||
|
||||
__all__ = [
|
||||
'create_calib_input_data', 'extract_model', 'inference_model',
|
||||
'torch2onnx', 'torch2torchscript', 'build_task_processor',
|
||||
'get_predefined_partition_cfg', 'visualize_model'
|
||||
]
|
||||
except Exception:
|
||||
pass
|
||||
__all__ = [
|
||||
'create_calib_input_data', 'extract_model', 'inference_model',
|
||||
'torch2onnx', 'torch2torchscript', 'build_task_processor',
|
||||
'get_predefined_partition_cfg', 'visualize_model'
|
||||
]
|
||||
|
|
|
@ -2,14 +2,8 @@
|
|||
from typing import Optional, Union
|
||||
|
||||
import mmcv
|
||||
import torch
|
||||
from mmcv.parallel import MMDataParallel
|
||||
|
||||
from mmdeploy.core import patch_model
|
||||
from mmdeploy.utils import (IR, cfg_apply_marks, get_backend, get_ir_config,
|
||||
load_config)
|
||||
from .core import PIPELINE_MANAGER, no_mp
|
||||
from .utils import create_calib_input_data as create_calib_input_data_impl
|
||||
|
||||
|
||||
@PIPELINE_MANAGER.register_pipeline()
|
||||
|
@ -36,6 +30,13 @@ def create_calib_input_data(calib_file: str,
|
|||
dataset_type (str, optional): The dataset type. Defaults to 'val'.
|
||||
device (str, optional): Device to create dataset. Defaults to 'cpu'.
|
||||
"""
|
||||
import torch
|
||||
from mmcv.parallel import MMDataParallel
|
||||
|
||||
from mmdeploy.core import patch_model
|
||||
from mmdeploy.utils import (IR, cfg_apply_marks, get_backend,
|
||||
get_ir_config, load_config)
|
||||
from .utils import create_calib_input_data as create_calib_input_data_impl
|
||||
with no_mp():
|
||||
if dataset_cfg is None:
|
||||
dataset_cfg = model_cfg
|
||||
|
|
|
@ -5,7 +5,6 @@ from typing import Dict, Iterable, Optional, Union
|
|||
import onnx
|
||||
|
||||
from .core import PIPELINE_MANAGER
|
||||
from .onnx import extract_partition
|
||||
|
||||
|
||||
@PIPELINE_MANAGER.register_pipeline()
|
||||
|
@ -62,6 +61,7 @@ def extract_model(model: Union[str, onnx.ModelProto],
|
|||
Returns:
|
||||
onnx.ModelProto: The extracted model.
|
||||
"""
|
||||
from .onnx import extract_partition
|
||||
|
||||
return extract_partition(model, start_marker, end_marker, start_name_map,
|
||||
end_name_map, dynamic_axes, save_file)
|
||||
|
|
|
@ -3,9 +3,6 @@ from typing import Any, Sequence, Union
|
|||
|
||||
import mmcv
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from mmdeploy.utils import get_input_shape, load_config
|
||||
|
||||
|
||||
def inference_model(model_cfg: Union[str, mmcv.Config],
|
||||
|
@ -37,6 +34,10 @@ def inference_model(model_cfg: Union[str, mmcv.Config],
|
|||
Returns:
|
||||
Any: The inference results
|
||||
"""
|
||||
import torch
|
||||
|
||||
from mmdeploy.utils import get_input_shape, load_config
|
||||
|
||||
deploy_cfg, model_cfg = load_config(deploy_cfg, model_cfg)
|
||||
|
||||
from mmdeploy.apis.utils import build_task_processor
|
||||
|
|
|
@ -1,11 +1,11 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from mmdeploy.backend.ncnn import from_onnx as _from_onnx
|
||||
from mmdeploy.backend.ncnn import is_available, is_custom_ops_available
|
||||
from mmdeploy.backend.ncnn import is_available
|
||||
from ..core import PIPELINE_MANAGER
|
||||
|
||||
from_onnx = PIPELINE_MANAGER.register_pipeline()(_from_onnx)
|
||||
|
||||
__all__ = ['is_available', 'is_custom_ops_available', 'from_onnx']
|
||||
__all__ = ['is_available', 'from_onnx']
|
||||
|
||||
if is_available():
|
||||
try:
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from mmdeploy.backend.onnxruntime import is_available, is_custom_ops_available
|
||||
from mmdeploy.backend.onnxruntime import is_available
|
||||
|
||||
__all__ = ['is_available', 'is_custom_ops_available']
|
||||
__all__ = ['is_available']
|
||||
|
|
|
@ -3,13 +3,8 @@ import os.path as osp
|
|||
from typing import Any, Optional, Union
|
||||
|
||||
import mmcv
|
||||
import torch
|
||||
|
||||
from mmdeploy.apis.core.pipeline_manager import no_mp
|
||||
from mmdeploy.utils import (Backend, get_backend, get_dynamic_axes,
|
||||
get_input_shape, get_onnx_config, load_config)
|
||||
from .core import PIPELINE_MANAGER
|
||||
from .onnx import export
|
||||
|
||||
|
||||
@PIPELINE_MANAGER.register_pipeline()
|
||||
|
@ -49,6 +44,13 @@ def torch2onnx(img: Any,
|
|||
defaults to `None`.
|
||||
device (str): A string specifying device type, defaults to 'cuda:0'.
|
||||
"""
|
||||
import torch
|
||||
|
||||
from mmdeploy.apis.core.pipeline_manager import no_mp
|
||||
from mmdeploy.utils import (Backend, get_backend, get_dynamic_axes,
|
||||
get_input_shape, get_onnx_config, load_config)
|
||||
from .onnx import export
|
||||
|
||||
# load deploy_cfg if necessary
|
||||
deploy_cfg, model_cfg = load_config(deploy_cfg, model_cfg)
|
||||
mmcv.mkdir_or_exist(osp.abspath(work_dir))
|
||||
|
|
|
@ -3,11 +3,8 @@ import os.path as osp
|
|||
from typing import Any, Optional, Union
|
||||
|
||||
import mmcv
|
||||
import torch
|
||||
|
||||
from mmdeploy.apis.core.pipeline_manager import PIPELINE_MANAGER, no_mp
|
||||
from mmdeploy.utils import get_backend, get_input_shape, load_config
|
||||
from .torch_jit import trace
|
||||
|
||||
|
||||
@PIPELINE_MANAGER.register_pipeline()
|
||||
|
@ -32,6 +29,11 @@ def torch2torchscript(img: Any,
|
|||
defaults to `None`.
|
||||
device (str): A string specifying device type, defaults to 'cuda:0'.
|
||||
"""
|
||||
import torch
|
||||
|
||||
from mmdeploy.utils import get_backend, get_input_shape, load_config
|
||||
from .torch_jit import trace
|
||||
|
||||
# load deploy_cfg if necessary
|
||||
deploy_cfg, model_cfg = load_config(deploy_cfg, model_cfg)
|
||||
mmcv.mkdir_or_exist(osp.abspath(work_dir))
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from mmdeploy.backend.tensorrt import is_available, is_custom_ops_available
|
||||
from mmdeploy.backend.tensorrt import is_available
|
||||
from ..core import PIPELINE_MANAGER
|
||||
|
||||
__all__ = ['is_available', 'is_custom_ops_available']
|
||||
__all__ = ['is_available']
|
||||
|
||||
if is_available():
|
||||
from mmdeploy.backend.tensorrt import from_onnx as _from_onnx
|
||||
|
|
|
@ -2,12 +2,9 @@
|
|||
from copy import deepcopy
|
||||
from typing import Callable, Dict, Optional
|
||||
|
||||
import h5py
|
||||
import torch
|
||||
import tqdm
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from mmdeploy.core import RewriterContext, reset_mark_function_count
|
||||
from ..core import PIPELINE_MANAGER
|
||||
|
||||
|
||||
|
@ -46,6 +43,10 @@ def create_calib_input_data(calib_file: str,
|
|||
'val', defaults to 'val'.
|
||||
device (str): Specifying the device to run on, defaults to 'cpu'.
|
||||
"""
|
||||
import h5py
|
||||
import tqdm
|
||||
|
||||
from mmdeploy.core import RewriterContext, reset_mark_function_count
|
||||
|
||||
backend = 'default'
|
||||
|
||||
|
|
|
@ -5,13 +5,12 @@ import mmcv
|
|||
import numpy as np
|
||||
import torch
|
||||
|
||||
from mmdeploy.codebase import BaseTask
|
||||
from mmdeploy.utils import Backend, get_backend, get_input_shape, load_config
|
||||
|
||||
|
||||
def visualize_model(model_cfg: Union[str, mmcv.Config],
|
||||
deploy_cfg: Union[str, mmcv.Config],
|
||||
model: Union[str, Sequence[str], BaseTask],
|
||||
model: Union[str, Sequence[str]],
|
||||
img: Union[str, np.ndarray],
|
||||
device: str,
|
||||
backend: Optional[Backend] = None,
|
||||
|
|
|
@ -1,18 +1,11 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import importlib
|
||||
|
||||
from .backend_manager import AscendManager
|
||||
from .utils import update_sdk_pipeline
|
||||
|
||||
_BackendManager = AscendManager
|
||||
|
||||
def is_available():
|
||||
"""Check whether acl is installed.
|
||||
|
||||
Returns:
|
||||
bool: True if acl package is installed.
|
||||
"""
|
||||
return importlib.util.find_spec('acl') is not None
|
||||
|
||||
is_available = _BackendManager.is_available
|
||||
build_wrapper = _BackendManager.build_wrapper
|
||||
|
||||
__all__ = ['update_sdk_pipeline', 'AscendManager']
|
||||
|
||||
|
|
|
@ -32,6 +32,31 @@ class AscendManager(BaseBackendManager):
|
|||
from .wrapper import AscendWrapper
|
||||
return AscendWrapper(model=backend_files[0], device=device)
|
||||
|
||||
@classmethod
|
||||
def is_available(cls, with_custom_ops: bool = False) -> bool:
|
||||
"""Check whether backend is installed.
|
||||
|
||||
Args:
|
||||
with_custom_ops (bool): check custom ops exists.
|
||||
|
||||
Returns:
|
||||
bool: True if backend package is installed.
|
||||
"""
|
||||
import importlib
|
||||
return importlib.util.find_spec('acl') is not None
|
||||
|
||||
@classmethod
|
||||
def get_version(cls) -> str:
|
||||
"""Get the version of the backend."""
|
||||
if not cls.is_available():
|
||||
return 'None'
|
||||
else:
|
||||
import pkg_resources
|
||||
try:
|
||||
return pkg_resources.get_distribution('acl').version
|
||||
except Exception:
|
||||
return 'None'
|
||||
|
||||
@classmethod
|
||||
def to_backend(cls,
|
||||
ir_files: Sequence[str],
|
||||
|
@ -51,7 +76,7 @@ class AscendManager(BaseBackendManager):
|
|||
device (str, optional): The device type. Defaults to 'cpu'.
|
||||
|
||||
Returns:
|
||||
Seqeuence[str]: Backend files.
|
||||
Sequence[str]: Backend files.
|
||||
"""
|
||||
from mmdeploy.utils import get_model_inputs
|
||||
from .onnx2ascend import from_onnx
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
import importlib
|
||||
import logging
|
||||
from abc import ABCMeta
|
||||
from typing import Any, Optional, Sequence
|
||||
from typing import Any, Callable, Optional, Sequence
|
||||
|
||||
|
||||
class BaseBackendManager(metaclass=ABCMeta):
|
||||
|
@ -29,7 +29,50 @@ class BaseBackendManager(metaclass=ABCMeta):
|
|||
to None.
|
||||
"""
|
||||
raise NotImplementedError(
|
||||
f'build_wrapper has not been implemented for `{cls.__name__}`')
|
||||
f'build_wrapper has not been implemented for "{cls.__name__}"')
|
||||
|
||||
@classmethod
|
||||
def is_available(cls, with_custom_ops: bool = False) -> bool:
|
||||
"""Check whether backend is installed.
|
||||
|
||||
Args:
|
||||
with_custom_ops (bool): check custom ops exists.
|
||||
|
||||
Returns:
|
||||
bool: True if backend package is installed.
|
||||
"""
|
||||
raise NotImplementedError(
|
||||
f'is_available has not been implemented for "{cls.__name__}"')
|
||||
|
||||
@classmethod
|
||||
def get_version(cls) -> str:
|
||||
"""Get the version of the backend."""
|
||||
raise NotImplementedError(
|
||||
f'get_version has not been implemented for "{cls.__name__}"')
|
||||
|
||||
@classmethod
|
||||
def check_env(cls, log_callback: Callable = lambda _: _) -> str:
|
||||
"""Check current environment.
|
||||
|
||||
Returns:
|
||||
str: Info about the environment.
|
||||
"""
|
||||
try:
|
||||
available = cls.is_available()
|
||||
if available:
|
||||
try:
|
||||
backend_version = cls.get_version()
|
||||
except NotImplementedError:
|
||||
backend_version = 'Unknown'
|
||||
else:
|
||||
backend_version = 'None'
|
||||
|
||||
info = f'{cls.backend_name}:\t{backend_version}'
|
||||
except Exception:
|
||||
info = f'{cls.backend_name}:\tCheckFailed'
|
||||
|
||||
log_callback(info)
|
||||
return info
|
||||
|
||||
@classmethod
|
||||
def to_backend(cls,
|
||||
|
@ -92,6 +135,8 @@ class BackendManagerRegistry:
|
|||
|
||||
self._module_dict[name] = cls
|
||||
|
||||
cls.backend_name = name
|
||||
|
||||
return cls
|
||||
|
||||
return wrap_manager
|
||||
|
|
|
@ -1,18 +1,10 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
|
||||
import importlib
|
||||
|
||||
from .backend_manager import CoreMLManager
|
||||
|
||||
_BackendManager = CoreMLManager
|
||||
|
||||
def is_available():
|
||||
"""Check whether coremltools is installed.
|
||||
|
||||
Returns:
|
||||
bool: True if coremltools package is installed.
|
||||
"""
|
||||
return importlib.util.find_spec('coremltools') is not None
|
||||
|
||||
is_available = _BackendManager.is_available
|
||||
build_wrapper = _BackendManager.build_wrapper
|
||||
|
||||
__all__ = ['CoreMLManager']
|
||||
|
||||
|
|
|
@ -32,6 +32,31 @@ class CoreMLManager(BaseBackendManager):
|
|||
from .wrapper import CoreMLWrapper
|
||||
return CoreMLWrapper(model_file=backend_files[0])
|
||||
|
||||
@classmethod
|
||||
def is_available(cls, with_custom_ops: bool = False) -> bool:
|
||||
"""Check whether backend is installed.
|
||||
|
||||
Args:
|
||||
with_custom_ops (bool): check custom ops exists.
|
||||
|
||||
Returns:
|
||||
bool: True if backend package is installed.
|
||||
"""
|
||||
import importlib
|
||||
return importlib.util.find_spec('coreml') is not None
|
||||
|
||||
@classmethod
|
||||
def get_version(cls) -> str:
|
||||
"""Get the version of the backend."""
|
||||
if not cls.is_available():
|
||||
return 'None'
|
||||
else:
|
||||
import pkg_resources
|
||||
try:
|
||||
return pkg_resources.get_distribution('coreml').version
|
||||
except Exception:
|
||||
return 'None'
|
||||
|
||||
@classmethod
|
||||
def to_backend(cls,
|
||||
ir_files: Sequence[str],
|
||||
|
|
|
@ -1,37 +1,11 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import importlib
|
||||
import os.path as osp
|
||||
|
||||
from .backend_manager import NCNNManager
|
||||
from .init_plugins import get_onnx2ncnn_path, get_ops_path
|
||||
from .onnx2ncnn import from_onnx
|
||||
|
||||
_BackendManager = NCNNManager
|
||||
|
||||
def is_available():
|
||||
"""Check whether ncnn and onnx2ncnn tool are installed.
|
||||
|
||||
Returns:
|
||||
bool: True if ncnn and onnx2ncnn tool are installed.
|
||||
"""
|
||||
|
||||
has_pyncnn = importlib.util.find_spec('ncnn') is not None
|
||||
|
||||
onnx2ncnn = get_onnx2ncnn_path()
|
||||
|
||||
return has_pyncnn and osp.exists(onnx2ncnn)
|
||||
|
||||
|
||||
def is_custom_ops_available():
|
||||
"""Check whether ncnn extension and custom ops are installed.
|
||||
|
||||
Returns:
|
||||
bool: True if ncnn extension and custom ops are compiled.
|
||||
"""
|
||||
has_pyncnn_ext = importlib.util.find_spec(
|
||||
'mmdeploy.backend.ncnn.ncnn_ext') is not None
|
||||
ncnn_ops_path = get_ops_path()
|
||||
return has_pyncnn_ext and osp.exists(ncnn_ops_path)
|
||||
|
||||
is_available = _BackendManager.is_available
|
||||
build_wrapper = _BackendManager.build_wrapper
|
||||
|
||||
__all__ = ['NCNNManager', 'from_onnx']
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
import logging
|
||||
import os.path as osp
|
||||
import sys
|
||||
from typing import Any, Optional, Sequence
|
||||
from typing import Any, Callable, Optional, Sequence
|
||||
|
||||
from mmdeploy.utils import get_backend_config, get_root_logger
|
||||
from ..base import BACKEND_MANAGERS, BaseBackendManager
|
||||
|
@ -46,6 +46,63 @@ class NCNNManager(BaseBackendManager):
|
|||
output_names=output_names,
|
||||
use_vulkan=use_vulkan)
|
||||
|
||||
@classmethod
|
||||
def is_available(cls, with_custom_ops: bool = False) -> bool:
|
||||
"""Check whether backend is installed.
|
||||
|
||||
Args:
|
||||
with_custom_ops (bool): check custom ops exists.
|
||||
|
||||
Returns:
|
||||
bool: True if backend package is installed.
|
||||
"""
|
||||
import importlib
|
||||
|
||||
from .init_plugins import get_onnx2ncnn_path, get_ops_path
|
||||
has_pyncnn = importlib.util.find_spec('ncnn') is not None
|
||||
onnx2ncnn = get_onnx2ncnn_path()
|
||||
ret = has_pyncnn and (onnx2ncnn is not None)
|
||||
|
||||
if ret and with_custom_ops:
|
||||
has_pyncnn_ext = importlib.util.find_spec(
|
||||
'mmdeploy.backend.ncnn.ncnn_ext') is not None
|
||||
op_path = get_ops_path()
|
||||
custom_ops_exist = osp.exists(op_path)
|
||||
ret = ret and has_pyncnn_ext and custom_ops_exist
|
||||
|
||||
return ret
|
||||
|
||||
@classmethod
|
||||
def get_version(cls) -> str:
|
||||
"""Get the version of the backend."""
|
||||
if not cls.is_available():
|
||||
return 'None'
|
||||
else:
|
||||
import pkg_resources
|
||||
try:
|
||||
return pkg_resources.get_distribution('ncnn').version
|
||||
except Exception:
|
||||
return 'None'
|
||||
|
||||
@classmethod
|
||||
def check_env(cls, log_callback: Callable = lambda _: _) -> str:
|
||||
"""Check current environment.
|
||||
|
||||
Returns:
|
||||
str: Info about the environment.
|
||||
"""
|
||||
info = super().check_env(log_callback=log_callback)
|
||||
available = cls.is_available()
|
||||
ops_available = cls.is_available(with_custom_ops=True)
|
||||
ops_available = 'Available' if ops_available else 'NotAvailable'
|
||||
|
||||
if available:
|
||||
ops_info = f'ncnn custom ops:\t{ops_available}'
|
||||
log_callback(ops_info)
|
||||
info = f'{info}\n{ops_info}'
|
||||
|
||||
return info
|
||||
|
||||
@classmethod
|
||||
def to_backend(cls,
|
||||
ir_files: Sequence[str],
|
||||
|
|
|
@ -1,30 +1,10 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import importlib
|
||||
import os.path as osp
|
||||
|
||||
from .backend_manager import ONNXRuntimeManager
|
||||
from .init_plugins import get_ops_path
|
||||
|
||||
_BackendManager = ONNXRuntimeManager
|
||||
|
||||
def is_available():
|
||||
"""Check whether ONNX Runtime package is installed.
|
||||
|
||||
Returns:
|
||||
bool: True if ONNX Runtime package is installed.
|
||||
"""
|
||||
|
||||
return importlib.util.find_spec('onnxruntime') is not None
|
||||
|
||||
|
||||
def is_custom_ops_available():
|
||||
"""Check whether ONNX Runtime custom ops are installed.
|
||||
|
||||
Returns:
|
||||
bool: True if ONNX Runtime custom ops are compiled.
|
||||
"""
|
||||
onnxruntime_op_path = get_ops_path()
|
||||
return osp.exists(onnxruntime_op_path)
|
||||
|
||||
is_available = _BackendManager.is_available
|
||||
build_wrapper = _BackendManager.build_wrapper
|
||||
|
||||
__all__ = ['ONNXRuntimeManager']
|
||||
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import logging
|
||||
from typing import Any, Optional, Sequence
|
||||
import os.path as osp
|
||||
from typing import Any, Callable, Optional, Sequence
|
||||
|
||||
from ..base import BACKEND_MANAGERS, BaseBackendManager
|
||||
|
||||
|
@ -35,6 +36,92 @@ class ONNXRuntimeManager(BaseBackendManager):
|
|||
device=device,
|
||||
output_names=output_names)
|
||||
|
||||
@classmethod
|
||||
def is_available(cls, with_custom_ops: bool = False) -> bool:
|
||||
"""Check whether backend is installed.
|
||||
|
||||
Args:
|
||||
with_custom_ops (bool): check custom ops exists.
|
||||
|
||||
Returns:
|
||||
bool: True if backend package is installed.
|
||||
"""
|
||||
import importlib
|
||||
ret = importlib.util.find_spec('onnxruntime') is not None
|
||||
|
||||
if ret and with_custom_ops:
|
||||
from .init_plugins import get_ops_path
|
||||
ops_path = get_ops_path()
|
||||
custom_ops_exist = osp.exists(ops_path)
|
||||
ret = ret and custom_ops_exist
|
||||
|
||||
return ret
|
||||
|
||||
@classmethod
|
||||
def get_version(cls) -> str:
|
||||
"""Get the version of the backend."""
|
||||
if not cls.is_available():
|
||||
return 'None'
|
||||
else:
|
||||
import pkg_resources
|
||||
try:
|
||||
ort_version = pkg_resources.get_distribution(
|
||||
'onnxruntime').version
|
||||
except Exception:
|
||||
ort_version = 'None'
|
||||
try:
|
||||
ort_gpu_version = pkg_resources.get_distribution(
|
||||
'onnxruntime-gpu').version
|
||||
except Exception:
|
||||
ort_gpu_version = 'None'
|
||||
|
||||
if ort_gpu_version != 'None':
|
||||
return ort_gpu_version
|
||||
else:
|
||||
return ort_version
|
||||
|
||||
@classmethod
|
||||
def check_env(cls, log_callback: Callable = lambda _: _) -> str:
|
||||
"""Check current environment.
|
||||
|
||||
Returns:
|
||||
str: Info about the environment.
|
||||
"""
|
||||
import pkg_resources
|
||||
|
||||
try:
|
||||
if cls.is_available():
|
||||
ops_available = cls.is_available(with_custom_ops=True)
|
||||
ops_available = 'Available' \
|
||||
if ops_available else 'NotAvailable'
|
||||
|
||||
try:
|
||||
ort_version = pkg_resources.get_distribution(
|
||||
'onnxruntime').version
|
||||
except Exception:
|
||||
ort_version = 'None'
|
||||
try:
|
||||
ort_gpu_version = pkg_resources.get_distribution(
|
||||
'onnxruntime-gpu').version
|
||||
except Exception:
|
||||
ort_gpu_version = 'None'
|
||||
|
||||
ort_info = f'ONNXRuntime:\t{ort_version}'
|
||||
log_callback(ort_info)
|
||||
ort_gpu_info = f'ONNXRuntime-gpu:\t{ort_gpu_version}'
|
||||
log_callback(ort_gpu_info)
|
||||
ort_ops_info = f'ONNXRuntime custom ops:\t{ops_available}'
|
||||
log_callback(ort_ops_info)
|
||||
|
||||
info = f'{ort_info}\n{ort_gpu_info}\n{ort_ops_info}'
|
||||
else:
|
||||
info = 'ONNXRuntime:\tNone'
|
||||
log_callback(info)
|
||||
except Exception:
|
||||
info = f'{cls.backend_name}:\tCheckFailed'
|
||||
log_callback(info)
|
||||
return info
|
||||
|
||||
@classmethod
|
||||
def to_backend(cls,
|
||||
ir_files: Sequence[str],
|
||||
|
|
|
@ -1,17 +1,10 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import importlib
|
||||
|
||||
from .backend_manager import OpenVINOManager
|
||||
|
||||
_BackendManager = OpenVINOManager
|
||||
|
||||
def is_available() -> bool:
|
||||
"""Checking if OpenVINO is installed.
|
||||
|
||||
Returns:
|
||||
bool: True if OpenVINO is installed.
|
||||
"""
|
||||
return importlib.util.find_spec('openvino') is not None
|
||||
|
||||
is_available = _BackendManager.is_available
|
||||
build_wrapper = _BackendManager.build_wrapper
|
||||
|
||||
__all__ = ['OpenVINOManager']
|
||||
|
||||
|
|
|
@ -33,6 +33,33 @@ class OpenVINOManager(BaseBackendManager):
|
|||
return OpenVINOWrapper(
|
||||
ir_model_file=backend_files[0], output_names=output_names)
|
||||
|
||||
@classmethod
|
||||
def is_available(cls, with_custom_ops: bool = False) -> bool:
|
||||
"""Check whether backend is installed.
|
||||
|
||||
Args:
|
||||
with_custom_ops (bool): check custom ops exists.
|
||||
|
||||
Returns:
|
||||
bool: True if backend package is installed.
|
||||
"""
|
||||
import importlib
|
||||
ret = importlib.util.find_spec('openvino') is not None
|
||||
|
||||
return ret
|
||||
|
||||
@classmethod
|
||||
def get_version(cls) -> str:
|
||||
"""Get the version of the backend."""
|
||||
if not cls.is_available():
|
||||
return 'None'
|
||||
else:
|
||||
import pkg_resources
|
||||
try:
|
||||
return pkg_resources.get_distribution('openvino').version
|
||||
except Exception:
|
||||
return 'None'
|
||||
|
||||
@classmethod
|
||||
def to_backend(cls,
|
||||
ir_files: Sequence[str],
|
||||
|
|
|
@ -1,17 +1,9 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import importlib
|
||||
|
||||
from .backend_manager import PPLNNManager
|
||||
|
||||
|
||||
def is_available():
|
||||
"""Check whether pplnn is installed.
|
||||
|
||||
Returns:
|
||||
bool: True if pplnn package is installed.
|
||||
"""
|
||||
return importlib.util.find_spec('pyppl') is not None
|
||||
|
||||
_BackendManager = PPLNNManager
|
||||
is_available = _BackendManager.is_available
|
||||
build_wrapper = _BackendManager.build_wrapper
|
||||
|
||||
__all__ = ['PPLNNManager']
|
||||
|
||||
|
|
|
@ -36,6 +36,33 @@ class PPLNNManager(BaseBackendManager):
|
|||
device=device,
|
||||
output_names=output_names)
|
||||
|
||||
@classmethod
|
||||
def is_available(cls, with_custom_ops: bool = False) -> bool:
|
||||
"""Check whether backend is installed.
|
||||
|
||||
Args:
|
||||
with_custom_ops (bool): check custom ops exists.
|
||||
|
||||
Returns:
|
||||
bool: True if backend package is installed.
|
||||
"""
|
||||
import importlib
|
||||
ret = importlib.util.find_spec('pyppl') is not None
|
||||
|
||||
return ret
|
||||
|
||||
@classmethod
|
||||
def get_version(cls) -> str:
|
||||
"""Get the version of the backend."""
|
||||
if not cls.is_available():
|
||||
return 'None'
|
||||
else:
|
||||
import pkg_resources
|
||||
try:
|
||||
return pkg_resources.get_distribution('pyppl').version
|
||||
except Exception:
|
||||
return 'None'
|
||||
|
||||
@classmethod
|
||||
def to_backend(cls,
|
||||
ir_files: Sequence[str],
|
||||
|
|
|
@ -1,18 +1,12 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import importlib
|
||||
import re
|
||||
import subprocess
|
||||
|
||||
from .backend_manager import RKNNManager
|
||||
|
||||
|
||||
def is_available():
|
||||
"""Check whether rknn is installed.
|
||||
|
||||
Returns:
|
||||
bool: True if rknn package is installed.
|
||||
"""
|
||||
return importlib.util.find_spec('rknn') is not None
|
||||
_BackendManager = RKNNManager
|
||||
is_available = _BackendManager.is_available
|
||||
build_wrapper = _BackendManager.build_wrapper
|
||||
|
||||
|
||||
def device_available():
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import logging
|
||||
import os.path as osp
|
||||
from typing import Any, Optional, Sequence
|
||||
from typing import Any, Callable, Optional, Sequence
|
||||
|
||||
from mmdeploy.utils import get_common_config
|
||||
from ..base import BACKEND_MANAGERS, BaseBackendManager
|
||||
|
@ -38,6 +38,87 @@ class RKNNManager(BaseBackendManager):
|
|||
common_config=common_config,
|
||||
output_names=output_names)
|
||||
|
||||
@classmethod
|
||||
def is_available(cls, with_custom_ops: bool = False) -> bool:
|
||||
"""Check whether backend is installed.
|
||||
|
||||
Args:
|
||||
with_custom_ops (bool): check custom ops exists.
|
||||
|
||||
Returns:
|
||||
bool: True if backend package is installed.
|
||||
"""
|
||||
import importlib
|
||||
try:
|
||||
ret = importlib.util.find_spec('rknn-toolkit2') is not None
|
||||
except Exception:
|
||||
pass
|
||||
if ret is None:
|
||||
try:
|
||||
ret = importlib.util.find_spec('rknn-toolkit') is not None
|
||||
except Exception:
|
||||
pass
|
||||
return ret
|
||||
|
||||
@classmethod
|
||||
def get_version(cls) -> str:
|
||||
"""Get the version of the backend."""
|
||||
if not cls.is_available():
|
||||
return 'None'
|
||||
else:
|
||||
import pkg_resources
|
||||
rknn_version = None
|
||||
rknn2_version = None
|
||||
try:
|
||||
rknn_version = pkg_resources.get_distribution(
|
||||
'rknn-toolkit').version
|
||||
except Exception:
|
||||
pass
|
||||
try:
|
||||
rknn2_version = pkg_resources.get_distribution(
|
||||
'rknn-toolkit2').version
|
||||
except Exception:
|
||||
pass
|
||||
if rknn2_version is not None:
|
||||
return rknn2_version
|
||||
elif rknn_version is not None:
|
||||
return rknn_version
|
||||
return 'None'
|
||||
|
||||
@classmethod
|
||||
def check_env(cls, log_callback: Callable = lambda _: _) -> str:
|
||||
"""Check current environment.
|
||||
|
||||
Returns:
|
||||
str: Info about the environment.
|
||||
"""
|
||||
import pkg_resources
|
||||
try:
|
||||
rknn_version = 'None'
|
||||
rknn2_version = 'None'
|
||||
try:
|
||||
rknn_version = pkg_resources.get_distribution(
|
||||
'rknn-toolkit').version
|
||||
except Exception:
|
||||
pass
|
||||
try:
|
||||
rknn2_version = pkg_resources.get_distribution(
|
||||
'rknn-toolkit2').version
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
rknn_info = f'rknn-toolkit:\t{rknn_version}'
|
||||
rknn2_info = f'rknn2-toolkit:\t{rknn2_version}'
|
||||
log_callback(rknn_info)
|
||||
log_callback(rknn2_info)
|
||||
|
||||
info = '\n'.join([rknn_info, rknn2_info])
|
||||
|
||||
except Exception:
|
||||
info = f'{cls.backend_name}:\tCheckFailed'
|
||||
log_callback(info)
|
||||
return info
|
||||
|
||||
@classmethod
|
||||
def to_backend(cls,
|
||||
ir_files: Sequence[str],
|
||||
|
|
|
@ -1,33 +1,9 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import importlib
|
||||
import os
|
||||
import sys
|
||||
|
||||
from mmdeploy.utils import get_file_path
|
||||
from .backend_manager import SDKManager
|
||||
|
||||
_is_available = False
|
||||
|
||||
module_name = 'mmdeploy_python'
|
||||
|
||||
candidates = [
|
||||
f'../../../build/lib/{module_name}.*.so',
|
||||
f'../../../build/bin/*/{module_name}.*.pyd'
|
||||
]
|
||||
|
||||
lib_path = get_file_path(os.path.dirname(__file__), candidates)
|
||||
|
||||
if lib_path:
|
||||
lib_dir = os.path.dirname(lib_path)
|
||||
sys.path.append(lib_dir)
|
||||
|
||||
if importlib.util.find_spec(module_name) is not None:
|
||||
_is_available = True
|
||||
|
||||
|
||||
def is_available() -> bool:
|
||||
return _is_available
|
||||
|
||||
_BackendManager = SDKManager
|
||||
is_available = _BackendManager.is_available
|
||||
build_wrapper = _BackendManager.build_wrapper
|
||||
|
||||
__all__ = ['SDKManager']
|
||||
|
||||
|
|
|
@ -1,10 +1,30 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
|
||||
import importlib
|
||||
import os.path as osp
|
||||
import sys
|
||||
from typing import Any, Optional, Sequence
|
||||
|
||||
from mmdeploy.utils import SDK_TASK_MAP, get_task_type
|
||||
from mmdeploy.utils import get_file_path
|
||||
from ..base import BACKEND_MANAGERS, BaseBackendManager
|
||||
|
||||
_is_available = False
|
||||
|
||||
module_name = 'mmdeploy_python'
|
||||
|
||||
candidates = [
|
||||
f'../../../build/lib/{module_name}.*.so',
|
||||
f'../../../build/bin/*/{module_name}.*.pyd'
|
||||
]
|
||||
|
||||
lib_path = get_file_path(osp.dirname(__file__), candidates)
|
||||
|
||||
if lib_path:
|
||||
lib_dir = osp.dirname(lib_path)
|
||||
sys.path.append(lib_dir)
|
||||
|
||||
if importlib.util.find_spec(module_name) is not None:
|
||||
_is_available = True
|
||||
|
||||
|
||||
@BACKEND_MANAGERS.register('sdk')
|
||||
class SDKManager(BaseBackendManager):
|
||||
|
@ -32,6 +52,33 @@ class SDKManager(BaseBackendManager):
|
|||
assert deploy_cfg is not None, \
|
||||
'Building SDKWrapper requires deploy_cfg'
|
||||
from mmdeploy.backend.sdk import SDKWrapper
|
||||
from mmdeploy.utils import SDK_TASK_MAP, get_task_type
|
||||
task_name = SDK_TASK_MAP[get_task_type(deploy_cfg)]['cls_name']
|
||||
return SDKWrapper(
|
||||
model_file=backend_files[0], task_name=task_name, device=device)
|
||||
|
||||
@classmethod
|
||||
def is_available(cls, with_custom_ops: bool = False) -> bool:
|
||||
"""Check whether backend is installed.
|
||||
|
||||
Args:
|
||||
with_custom_ops (bool): check custom ops exists.
|
||||
|
||||
Returns:
|
||||
bool: True if backend package is installed.
|
||||
"""
|
||||
global _is_available
|
||||
|
||||
return _is_available
|
||||
|
||||
@classmethod
|
||||
def get_version(cls) -> str:
|
||||
"""Get the version of the backend."""
|
||||
if not cls.is_available():
|
||||
return 'None'
|
||||
else:
|
||||
import pkg_resources
|
||||
try:
|
||||
return pkg_resources.get_distribution('mmdeploy').version
|
||||
except Exception:
|
||||
return 'None'
|
||||
|
|
|
@ -1,23 +1,10 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import os.path as osp
|
||||
|
||||
from .backend_manager import SNPEManager
|
||||
from .init_plugins import get_onnx2dlc_path
|
||||
from .onnx2dlc import from_onnx
|
||||
|
||||
|
||||
def is_available():
|
||||
"""Check whether ncnn and snpe-onnx-to-dlc tool are installed.
|
||||
|
||||
Returns:
|
||||
bool: True if snpe-onnx-to-dlc tool are installed.
|
||||
"""
|
||||
|
||||
onnx2dlc = get_onnx2dlc_path()
|
||||
if onnx2dlc is None:
|
||||
return False
|
||||
return osp.exists(onnx2dlc)
|
||||
|
||||
_BackendManager = SNPEManager
|
||||
is_available = _BackendManager.is_available
|
||||
build_wrapper = _BackendManager.build_wrapper
|
||||
|
||||
__all__ = ['from_onnx', 'SNPEManager']
|
||||
|
||||
|
|
|
@ -38,6 +38,22 @@ class SNPEManager(BaseBackendManager):
|
|||
return SNPEWrapper(
|
||||
dlc_file=backend_files[0], uri=uri, output_names=output_names)
|
||||
|
||||
@classmethod
|
||||
def is_available(cls, with_custom_ops: bool = False) -> bool:
|
||||
"""Check whether backend is installed.
|
||||
|
||||
Args:
|
||||
with_custom_ops (bool): check custom ops exists.
|
||||
|
||||
Returns:
|
||||
bool: True if backend package is installed.
|
||||
"""
|
||||
from .onnx2dlc import get_onnx2dlc_path
|
||||
onnx2dlc = get_onnx2dlc_path()
|
||||
if onnx2dlc is None:
|
||||
return False
|
||||
return osp.exists(onnx2dlc)
|
||||
|
||||
@classmethod
|
||||
def to_backend(cls,
|
||||
ir_files: Sequence[str],
|
||||
|
|
|
@ -1,31 +1,11 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
# flake8: noqa
|
||||
import importlib
|
||||
import os.path as osp
|
||||
|
||||
from .backend_manager import TensorRTManager
|
||||
from .init_plugins import get_ops_path, load_tensorrt_plugin
|
||||
|
||||
|
||||
def is_available():
|
||||
"""Check whether TensorRT package is installed and cuda is available.
|
||||
|
||||
Returns:
|
||||
bool: True if TensorRT package is installed and cuda is available.
|
||||
"""
|
||||
|
||||
return importlib.util.find_spec('tensorrt') is not None
|
||||
|
||||
|
||||
def is_custom_ops_available():
|
||||
"""Check whether TensorRT custom ops are installed.
|
||||
|
||||
Returns:
|
||||
bool: True if TensorRT custom ops are compiled.
|
||||
"""
|
||||
tensorrt_op_path = get_ops_path()
|
||||
return osp.exists(tensorrt_op_path)
|
||||
from .init_plugins import load_tensorrt_plugin
|
||||
|
||||
_BackendManager = TensorRTManager
|
||||
is_available = _BackendManager.is_available
|
||||
build_wrapper = _BackendManager.build_wrapper
|
||||
|
||||
__all__ = ['TensorRTManager']
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
|
||||
import logging
|
||||
from typing import Any, Optional, Sequence
|
||||
import os.path as osp
|
||||
from typing import Any, Callable, Optional, Sequence
|
||||
|
||||
from ..base import BACKEND_MANAGERS, BaseBackendManager
|
||||
|
||||
|
@ -33,6 +33,57 @@ class TensorRTManager(BaseBackendManager):
|
|||
from .wrapper import TRTWrapper
|
||||
return TRTWrapper(engine=backend_files[0], output_names=output_names)
|
||||
|
||||
@classmethod
|
||||
def is_available(cls, with_custom_ops: bool = False) -> bool:
|
||||
"""Check whether backend is installed.
|
||||
|
||||
Args:
|
||||
with_custom_ops (bool): check custom ops exists.
|
||||
|
||||
Returns:
|
||||
bool: True if backend package is installed.
|
||||
"""
|
||||
import importlib
|
||||
ret = importlib.util.find_spec('tensorrt') is not None
|
||||
|
||||
if ret and with_custom_ops:
|
||||
from .init_plugins import get_ops_path
|
||||
ops_path = get_ops_path()
|
||||
custom_ops_exist = osp.exists(ops_path)
|
||||
ret = ret and custom_ops_exist
|
||||
|
||||
return ret
|
||||
|
||||
@classmethod
|
||||
def get_version(cls) -> str:
|
||||
"""Get the version of the backend."""
|
||||
if not cls.is_available():
|
||||
return 'None'
|
||||
else:
|
||||
import pkg_resources
|
||||
try:
|
||||
return pkg_resources.get_distribution('tensorrt').version
|
||||
except Exception:
|
||||
return 'None'
|
||||
|
||||
@classmethod
|
||||
def check_env(cls, log_callback: Callable = lambda _: _) -> str:
|
||||
"""Check current environment.
|
||||
|
||||
Returns:
|
||||
str: Info about the environment.
|
||||
"""
|
||||
info = super().check_env(log_callback=log_callback)
|
||||
available = cls.is_available()
|
||||
ops_available = cls.is_available(with_custom_ops=True)
|
||||
ops_available = 'Available' if ops_available else 'NotAvailable'
|
||||
|
||||
if available:
|
||||
ops_info = f'tensorrt custom ops:\t{ops_available}'
|
||||
log_callback(ops_info)
|
||||
info = f'{info}\n{ops_info}'
|
||||
return info
|
||||
|
||||
@classmethod
|
||||
def to_backend(cls,
|
||||
ir_files: Sequence[str],
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from typing import Dict, Sequence, Union
|
||||
from typing import Any, Dict, Sequence, Union
|
||||
|
||||
import h5py
|
||||
import numpy as np
|
||||
import pycuda.autoinit # noqa:F401
|
||||
import pycuda.driver as cuda
|
||||
|
@ -25,13 +24,14 @@ class HDF5Calibrator(trt.IInt8Calibrator):
|
|||
|
||||
def __init__(
|
||||
self,
|
||||
calib_file: Union[str, h5py.File],
|
||||
calib_file: Union[str, Any],
|
||||
input_shapes: Dict[str, Sequence[int]],
|
||||
model_type: str = 'end2end',
|
||||
device_id: int = 0,
|
||||
algorithm: trt.CalibrationAlgoType = DEFAULT_CALIBRATION_ALGORITHM,
|
||||
**kwargs):
|
||||
super().__init__()
|
||||
import h5py
|
||||
|
||||
if isinstance(calib_file, str):
|
||||
calib_file = h5py.File(calib_file, mode='r')
|
||||
|
|
|
@ -139,14 +139,15 @@ def from_onnx(onnx_model: Union[str, onnx.ModelProto],
|
|||
>>> })
|
||||
"""
|
||||
|
||||
import os
|
||||
old_cuda_device = os.environ.get('CUDA_DEVICE', None)
|
||||
os.environ['CUDA_DEVICE'] = str(device_id)
|
||||
import pycuda.autoinit # noqa:F401
|
||||
if old_cuda_device is not None:
|
||||
os.environ['CUDA_DEVICE'] = old_cuda_device
|
||||
else:
|
||||
os.environ.pop('CUDA_DEVICE')
|
||||
if device_id != 0:
|
||||
import os
|
||||
old_cuda_device = os.environ.get('CUDA_DEVICE', None)
|
||||
os.environ['CUDA_DEVICE'] = str(device_id)
|
||||
import pycuda.autoinit # noqa:F401
|
||||
if old_cuda_device is not None:
|
||||
os.environ['CUDA_DEVICE'] = old_cuda_device
|
||||
else:
|
||||
os.environ.pop('CUDA_DEVICE')
|
||||
|
||||
load_tensorrt_plugin()
|
||||
# create builder and network
|
||||
|
|
|
@ -3,15 +3,9 @@
|
|||
from .backend_manager import TorchScriptManager
|
||||
from .init_plugins import get_ops_path, ops_available
|
||||
|
||||
|
||||
def is_available():
|
||||
"""Torchscript available.
|
||||
|
||||
Returns:
|
||||
bool: Always True.
|
||||
"""
|
||||
return True
|
||||
|
||||
_BackendManager = TorchScriptManager
|
||||
is_available = _BackendManager.is_available
|
||||
build_wrapper = _BackendManager.build_wrapper
|
||||
|
||||
__all__ = ['get_ops_path', 'ops_available', 'TorchScriptManager']
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
|
||||
import logging
|
||||
from typing import Any, Optional, Sequence
|
||||
from typing import Any, Callable, Optional, Sequence
|
||||
|
||||
from ..base import BACKEND_MANAGERS, BaseBackendManager
|
||||
|
||||
|
@ -35,6 +35,56 @@ class TorchScriptManager(BaseBackendManager):
|
|||
input_names=input_names,
|
||||
output_names=output_names)
|
||||
|
||||
@classmethod
|
||||
def is_available(cls, with_custom_ops: bool = False) -> bool:
|
||||
"""Check whether backend is installed.
|
||||
|
||||
Args:
|
||||
with_custom_ops (bool): check custom ops exists.
|
||||
|
||||
Returns:
|
||||
bool: True if backend package is installed.
|
||||
"""
|
||||
import importlib
|
||||
ret = importlib.util.find_spec('torch') is not None
|
||||
|
||||
if ret and with_custom_ops:
|
||||
from .init_plugins import ops_available
|
||||
ret = ret and ops_available()
|
||||
|
||||
return ret
|
||||
|
||||
@classmethod
|
||||
def get_version(cls) -> str:
|
||||
"""Get the version of the backend."""
|
||||
if not cls.is_available():
|
||||
return 'None'
|
||||
else:
|
||||
import pkg_resources
|
||||
try:
|
||||
return pkg_resources.get_distribution('torch').version
|
||||
except Exception:
|
||||
return 'None'
|
||||
|
||||
@classmethod
|
||||
def check_env(cls, log_callback: Callable = lambda _: _) -> str:
|
||||
"""Check current environment.
|
||||
|
||||
Returns:
|
||||
str: Info about the environment.
|
||||
"""
|
||||
info = super().check_env(log_callback=log_callback)
|
||||
available = cls.is_available()
|
||||
ops_available = cls.is_available(with_custom_ops=True)
|
||||
ops_available = 'Available' if ops_available else 'NotAvailable'
|
||||
|
||||
if available:
|
||||
ops_info = f'torchscript custom ops:\t{ops_available}'
|
||||
log_callback(ops_info)
|
||||
info = f'{info}\n{ops_info}'
|
||||
|
||||
return info
|
||||
|
||||
@classmethod
|
||||
def to_backend(cls,
|
||||
ir_files: Sequence[str],
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import glob
|
||||
import os.path as osp
|
||||
|
||||
|
||||
|
@ -9,14 +8,14 @@ def get_ops_path() -> str:
|
|||
Returns:
|
||||
str: A path of the torchscript extension library.
|
||||
"""
|
||||
wildcard = osp.abspath(
|
||||
osp.join(
|
||||
osp.dirname(__file__),
|
||||
'../../../build/lib/libmmdeploy_torchscript_ops.so'))
|
||||
|
||||
paths = glob.glob(wildcard)
|
||||
lib_path = paths[0] if len(paths) > 0 else ''
|
||||
return lib_path
|
||||
from mmdeploy.utils import get_file_path
|
||||
candidates = [
|
||||
'../../lib/libmmdeploy_torchscript_ops.so',
|
||||
'../../lib/mmdeploy_torchscript_ops.dll',
|
||||
'../../../build/lib/libmmdeploy_torchscript_ops.so',
|
||||
'../../../build/bin/*/mmdeploy_torchscript_ops.dll'
|
||||
]
|
||||
return get_file_path(osp.dirname(__file__), candidates)
|
||||
|
||||
|
||||
def ops_available() -> bool:
|
||||
|
|
|
@ -1,18 +1,11 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import importlib
|
||||
import sys
|
||||
|
||||
from .backend_manager import TVMManager
|
||||
|
||||
|
||||
def is_available() -> bool:
|
||||
"""Check whether tvm package is installed.
|
||||
|
||||
Returns:
|
||||
bool: True if tvm package is installed.
|
||||
"""
|
||||
|
||||
return importlib.util.find_spec('tvm') is not None
|
||||
_BackendManager = TVMManager
|
||||
is_available = _BackendManager.is_available
|
||||
build_wrapper = _BackendManager.build_wrapper
|
||||
|
||||
|
||||
def get_library_ext() -> str:
|
||||
|
|
|
@ -38,6 +38,33 @@ class TVMManager(BaseBackendManager):
|
|||
output_names=output_names,
|
||||
device=device)
|
||||
|
||||
@classmethod
|
||||
def is_available(cls, with_custom_ops: bool = False) -> bool:
|
||||
"""Check whether backend is installed.
|
||||
|
||||
Args:
|
||||
with_custom_ops (bool): check custom ops exists.
|
||||
|
||||
Returns:
|
||||
bool: True if backend package is installed.
|
||||
"""
|
||||
import importlib
|
||||
ret = importlib.util.find_spec('tvm') is not None
|
||||
|
||||
return ret
|
||||
|
||||
@classmethod
|
||||
def get_version(cls) -> str:
|
||||
"""Get the version of the backend."""
|
||||
if not cls.is_available():
|
||||
return 'None'
|
||||
else:
|
||||
import pkg_resources
|
||||
try:
|
||||
return pkg_resources.get_distribution('tvm').version
|
||||
except Exception:
|
||||
return 'None'
|
||||
|
||||
@classmethod
|
||||
def to_backend(cls,
|
||||
ir_files: Sequence[str],
|
||||
|
|
|
@ -18,7 +18,10 @@ def get_library_version(lib):
|
|||
except Exception:
|
||||
version = None
|
||||
else:
|
||||
version = lib.__version__
|
||||
if hasattr(lib, '__version__'):
|
||||
version = lib.__version__
|
||||
else:
|
||||
version = None
|
||||
|
||||
return version
|
||||
|
||||
|
|
|
@ -4,7 +4,6 @@ import os.path as osp
|
|||
import random
|
||||
import string
|
||||
import tempfile
|
||||
import warnings
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import mmcv
|
||||
|
@ -29,47 +28,13 @@ def backend_checker(backend: Backend, require_plugin: bool = False):
|
|||
will also check if the backend plugin has been compiled. Default
|
||||
to `False`.
|
||||
"""
|
||||
is_custom_ops_available = None
|
||||
if backend == Backend.ONNXRUNTIME:
|
||||
from mmdeploy.apis.onnxruntime import is_available
|
||||
if require_plugin:
|
||||
from mmdeploy.apis.onnxruntime import is_custom_ops_available
|
||||
elif backend == Backend.TENSORRT:
|
||||
from mmdeploy.apis.tensorrt import is_available
|
||||
if require_plugin:
|
||||
from mmdeploy.apis.tensorrt import is_custom_ops_available
|
||||
elif backend == Backend.PPLNN:
|
||||
from mmdeploy.apis.pplnn import is_available
|
||||
elif backend == Backend.NCNN:
|
||||
from mmdeploy.apis.ncnn import is_available
|
||||
if require_plugin:
|
||||
from mmdeploy.apis.ncnn import is_custom_ops_available
|
||||
elif backend == Backend.OPENVINO:
|
||||
from mmdeploy.apis.openvino import is_available
|
||||
elif backend == Backend.RKNN:
|
||||
# device not require as backend is not really running
|
||||
from mmdeploy.apis.rknn import is_available
|
||||
elif backend == Backend.ASCEND:
|
||||
from mmdeploy.apis.ascend import is_available
|
||||
elif backend == Backend.TVM:
|
||||
from mmdeploy.apis.tvm import is_available
|
||||
else:
|
||||
warnings.warn('The backend checker is not available')
|
||||
return
|
||||
from mmdeploy.backend.base import get_backend_manager
|
||||
|
||||
backend_mgr = get_backend_manager(backend.value)
|
||||
result = backend_mgr.is_available(with_custom_ops=require_plugin)
|
||||
|
||||
checker = pytest.mark.skipif(
|
||||
not is_available(), reason=f'{backend.value} package is not available')
|
||||
if require_plugin and is_custom_ops_available is not None:
|
||||
plugin_checker = pytest.mark.skipif(
|
||||
not is_custom_ops_available(),
|
||||
reason=f'{backend.value} plugin is not available')
|
||||
|
||||
def double_checker(func):
|
||||
func = checker(func)
|
||||
func = plugin_checker(func)
|
||||
return func
|
||||
|
||||
return double_checker
|
||||
not result, reason=f'{backend.value} package is not available')
|
||||
|
||||
return checker
|
||||
|
||||
|
@ -84,47 +49,18 @@ def check_backend(backend: Backend, require_plugin: bool = False):
|
|||
will also check if the backend plugin has been compiled. Default
|
||||
to `False`.
|
||||
"""
|
||||
is_custom_ops_available = None
|
||||
if backend == Backend.ONNXRUNTIME:
|
||||
from mmdeploy.apis.onnxruntime import is_available
|
||||
if require_plugin:
|
||||
from mmdeploy.apis.onnxruntime import is_custom_ops_available
|
||||
elif backend == Backend.TENSORRT:
|
||||
from mmdeploy.apis.tensorrt import is_available
|
||||
if require_plugin:
|
||||
from mmdeploy.apis.tensorrt import is_custom_ops_available
|
||||
elif backend == Backend.PPLNN:
|
||||
from mmdeploy.apis.pplnn import is_available
|
||||
elif backend == Backend.NCNN:
|
||||
from mmdeploy.apis.ncnn import is_available
|
||||
if require_plugin:
|
||||
from mmdeploy.apis.ncnn import is_custom_ops_available
|
||||
elif backend == Backend.OPENVINO:
|
||||
from mmdeploy.apis.openvino import is_available
|
||||
elif backend == Backend.TORCHSCRIPT:
|
||||
from mmdeploy.backend.torchscript import ops_available as is_available
|
||||
elif backend == Backend.RKNN:
|
||||
from mmdeploy.backend.rknn import is_available
|
||||
if not is_available():
|
||||
# skip CI in github
|
||||
pytest.skip(f'{backend.value} package is not available')
|
||||
# device required
|
||||
from mmdeploy.backend.rknn import device_available as is_available
|
||||
elif backend == Backend.ASCEND:
|
||||
from mmdeploy.backend.ascend import is_available
|
||||
elif backend == Backend.TVM:
|
||||
from mmdeploy.backend.tvm import is_available
|
||||
elif backend == Backend.COREML:
|
||||
from mmdeploy.backend.coreml import is_available
|
||||
else:
|
||||
warnings.warn('The backend checker is not available')
|
||||
return
|
||||
from mmdeploy.backend.base import get_backend_manager
|
||||
|
||||
if not is_available():
|
||||
backend_mgr = get_backend_manager(backend.value)
|
||||
result = backend_mgr.is_available(with_custom_ops=require_plugin)
|
||||
|
||||
if backend == Backend.RKNN:
|
||||
# device required
|
||||
from mmdeploy.backend.rknn import device_available
|
||||
result = result and device_available()
|
||||
|
||||
if not result:
|
||||
pytest.skip(f'{backend.value} package is not available')
|
||||
if require_plugin and is_custom_ops_available is not None:
|
||||
if not is_custom_ops_available():
|
||||
pytest.skip(f'{backend.value} plugin is not available')
|
||||
|
||||
|
||||
class WrapFunction(nn.Module):
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
h5py
|
||||
mmcls>=0.21.0,<=0.23.0
|
||||
mmdet>=2.19.0,<=2.20.0
|
||||
mmedit
|
||||
|
@ -7,3 +8,4 @@ mmrazor>=0.3.0
|
|||
mmsegmentation
|
||||
onnxruntime>=1.8.0
|
||||
openvino-dev
|
||||
tqdm
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
grpcio
|
||||
h5py
|
||||
matplotlib
|
||||
multiprocess
|
||||
numpy
|
||||
|
@ -7,4 +6,3 @@ onnx>=1.8.0
|
|||
protobuf<=3.20.1
|
||||
six
|
||||
terminaltables
|
||||
tqdm
|
||||
|
|
|
@ -3,7 +3,6 @@ import os.path as osp
|
|||
import tempfile
|
||||
from multiprocessing import Process
|
||||
|
||||
import h5py
|
||||
import mmcv
|
||||
|
||||
from mmdeploy.apis import create_calib_input_data
|
||||
|
@ -171,6 +170,7 @@ def get_model_cfg():
|
|||
|
||||
|
||||
def run_test_create_calib_end2end():
|
||||
import h5py
|
||||
model_cfg = get_model_cfg()
|
||||
deploy_cfg = get_end2end_deploy_cfg()
|
||||
create_calib_input_data(
|
||||
|
@ -203,6 +203,7 @@ def test_create_calib_end2end():
|
|||
|
||||
|
||||
def run_test_create_calib_parittion():
|
||||
import h5py
|
||||
model_cfg = get_model_cfg()
|
||||
deploy_cfg = get_partition_deploy_cfg()
|
||||
create_calib_input_data(
|
||||
|
|
|
@ -177,11 +177,10 @@ def run_wrapper(backend, wrapper, input):
|
|||
return results
|
||||
|
||||
|
||||
ALL_BACKEND = [
|
||||
Backend.TENSORRT, Backend.ONNXRUNTIME, Backend.PPLNN, Backend.NCNN,
|
||||
Backend.OPENVINO, Backend.TORCHSCRIPT, Backend.ASCEND, Backend.RKNN,
|
||||
Backend.COREML, Backend.TVM
|
||||
]
|
||||
ALL_BACKEND = list(Backend)
|
||||
ALL_BACKEND.remove(Backend.DEFAULT)
|
||||
ALL_BACKEND.remove(Backend.PYTORCH)
|
||||
ALL_BACKEND.remove(Backend.SDK)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('backend', ALL_BACKEND)
|
||||
|
|
|
@ -32,7 +32,7 @@ def assert_det_results(results, module_name: str = 'model'):
|
|||
|
||||
def assert_forward_results(results, module_name: str = 'model'):
|
||||
assert results is not None, f'failed to get output using {module_name}'
|
||||
assert isinstance(results, list)
|
||||
assert isinstance(results, Sequence)
|
||||
assert len(results) == 1
|
||||
if isinstance(results[0], tuple): # mask
|
||||
assert len(results[0][0]) == 80
|
||||
|
|
|
@ -4,8 +4,7 @@ from mmcv.utils import collect_env as collect_base_env
|
|||
from mmcv.utils import get_git_hash
|
||||
|
||||
import mmdeploy
|
||||
from mmdeploy.utils import (get_backend_version, get_codebase_version,
|
||||
get_root_logger)
|
||||
from mmdeploy.utils import get_codebase_version, get_root_logger
|
||||
|
||||
|
||||
def collect_env():
|
||||
|
@ -17,41 +16,16 @@ def collect_env():
|
|||
|
||||
|
||||
def check_backend():
|
||||
backend_versions = get_backend_version()
|
||||
ort_version = backend_versions['onnxruntime']
|
||||
trt_version = backend_versions['tensorrt']
|
||||
ncnn_version = backend_versions['ncnn']
|
||||
tvm_version = backend_versions['tvm']
|
||||
from mmdeploy.backend.base import get_backend_manager
|
||||
from mmdeploy.utils import Backend
|
||||
exclude_backend_lists = [Backend.DEFAULT, Backend.PYTORCH, Backend.SDK]
|
||||
backend_lists = [
|
||||
backend for backend in Backend if backend not in exclude_backend_lists
|
||||
]
|
||||
|
||||
import mmdeploy.apis.onnxruntime as ort_apis
|
||||
logger = get_root_logger()
|
||||
logger.info(f'onnxruntime: {ort_version}\tops_is_avaliable : '
|
||||
f'{ort_apis.is_custom_ops_available()}')
|
||||
|
||||
import mmdeploy.apis.tensorrt as trt_apis
|
||||
logger.info(f'tensorrt: {trt_version}\tops_is_avaliable : '
|
||||
f'{trt_apis.is_custom_ops_available()}')
|
||||
|
||||
import mmdeploy.apis.ncnn as ncnn_apis
|
||||
logger.info(f'ncnn: {ncnn_version}\tops_is_avaliable : '
|
||||
f'{ncnn_apis.is_custom_ops_available()}')
|
||||
|
||||
logger.info(f'tvm: {tvm_version}')
|
||||
|
||||
import mmdeploy.apis.pplnn as pplnn_apis
|
||||
logger.info(f'pplnn_is_avaliable: {pplnn_apis.is_available()}')
|
||||
|
||||
import mmdeploy.apis.openvino as openvino_apis
|
||||
logger.info(f'openvino_is_avaliable: {openvino_apis.is_available()}')
|
||||
|
||||
import mmdeploy.apis.snpe as snpe_apis
|
||||
logger.info(f'snpe_is_available: {snpe_apis.is_available()}')
|
||||
|
||||
import mmdeploy.apis.ascend as ascend_apis
|
||||
logger.info(f'ascend_is_available: {ascend_apis.is_available()}')
|
||||
|
||||
import mmdeploy.apis.coreml as coreml_apis
|
||||
logger.info(f'coreml_is_available: {coreml_apis.is_available()}')
|
||||
for backend in backend_lists:
|
||||
backend_mgr = get_backend_manager(backend.value)
|
||||
backend_mgr.check_env(logger.info)
|
||||
|
||||
|
||||
def check_codebase():
|
||||
|
|
Loading…
Reference in New Issue