parent
03c95a1149
commit
d96ee9e9f3
|
@ -3,13 +3,13 @@
|
|||
|
||||
#include "ort_utils.h"
|
||||
|
||||
const char *c_MMCVOpDomain = "mmcv";
|
||||
const char *c_MMDeployOpDomain = "mmdeploy";
|
||||
|
||||
OrtStatus *ORT_API_CALL RegisterCustomOps(OrtSessionOptions *options, const OrtApiBase *api) {
|
||||
OrtCustomOpDomain *domain = nullptr;
|
||||
const OrtApi *kOrtApi = api->GetApi(ORT_API_VERSION);
|
||||
|
||||
if (auto status = kOrtApi->CreateCustomOpDomain(c_MMCVOpDomain, &domain)) {
|
||||
if (auto status = kOrtApi->CreateCustomOpDomain(c_MMDeployOpDomain, &domain)) {
|
||||
return status;
|
||||
}
|
||||
|
||||
|
|
|
@ -22,6 +22,7 @@
|
|||
# go back to third_party directory and git clone pybind11
|
||||
cd ..
|
||||
git clone git@github.com:pybind/pybind11.git pybind11
|
||||
cd pybind11
|
||||
git checkout 70a58c5
|
||||
```
|
||||
|
||||
|
|
|
@ -28,7 +28,7 @@ class MultiLevelRoiAlign(Function):
|
|||
inputs = args[:len(featmap_strides)]
|
||||
rois = args[len(featmap_strides)]
|
||||
return g.op(
|
||||
'mmcv::MMCVMultiLevelRoiAlign',
|
||||
'mmdeploy::MMCVMultiLevelRoiAlign',
|
||||
rois,
|
||||
*inputs,
|
||||
output_height_i=output_size[1],
|
||||
|
|
|
@ -40,9 +40,9 @@ class Mark(torch.autograd.Function):
|
|||
|
||||
@staticmethod
|
||||
def symbolic(g, x, dtype, shape, func, func_id, type, name, id, attrs):
|
||||
"""Symbolic function for mmcv::Mark op."""
|
||||
"""Symbolic function for mmdeploy::Mark op."""
|
||||
n = g.op(
|
||||
'mmcv::Mark',
|
||||
'mmdeploy::Mark',
|
||||
x,
|
||||
dtype_i=TORCH_DTYPE_TO_ONNX[dtype],
|
||||
shape_i=shape,
|
||||
|
|
|
@ -132,10 +132,10 @@ def nms_dynamic(ctx, g, boxes: Tensor, scores: Tensor,
|
|||
|
||||
|
||||
class TRTBatchedNMSop(torch.autograd.Function):
|
||||
"""Create mmcv::TRTBatchedNMS op for TensorRT backend.
|
||||
"""Create mmdeploy::TRTBatchedNMS op for TensorRT backend.
|
||||
|
||||
NMS in ONNX supports dynamic outputs. This class helps replace
|
||||
onnx::NonMaxSuppression with mmcv::TRTBatchedNMS.
|
||||
onnx::NonMaxSuppression with mmdeploy::TRTBatchedNMS.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
|
@ -190,9 +190,9 @@ class TRTBatchedNMSop(torch.autograd.Function):
|
|||
iou_threshold: float,
|
||||
score_threshold: float,
|
||||
background_label_id: int = -1):
|
||||
"""Symbolic function for mmcv::TRTBatchedNMS."""
|
||||
"""Symbolic function for mmdeploy::TRTBatchedNMS."""
|
||||
return g.op(
|
||||
'mmcv::TRTBatchedNMS',
|
||||
'mmdeploy::TRTBatchedNMS',
|
||||
boxes,
|
||||
scores,
|
||||
num_classes_i=num_classes,
|
||||
|
|
|
@ -16,7 +16,7 @@ def roi_align_default(ctx, g, input: Tensor, rois: Tensor,
|
|||
sampling_ratio: int, pool_mode: str, aligned: bool):
|
||||
"""Rewrite symbolic function for default backend.
|
||||
|
||||
Replace onnx::RoiAlign with mmcv::MMCVRoiAlign.
|
||||
Replace onnx::RoiAlign with mmdeploy::MMCVRoiAlign.
|
||||
|
||||
Args:
|
||||
ctx (ContextCaller): The context with additional information.
|
||||
|
@ -38,7 +38,7 @@ def roi_align_default(ctx, g, input: Tensor, rois: Tensor,
|
|||
"""
|
||||
|
||||
return g.op(
|
||||
'mmcv::MMCVRoiAlign',
|
||||
'mmdeploy::MMCVRoiAlign',
|
||||
input,
|
||||
rois,
|
||||
output_height_i=output_size[0],
|
||||
|
|
|
@ -15,10 +15,10 @@ def grid_sampler(g,
|
|||
|
||||
PyTorch does not support export grid_sampler to ONNX by default. We add the
|
||||
support here. `grid_sampler` will be exported as ONNX node
|
||||
'mmcv::grid_sampler'
|
||||
'mmdeploy::grid_sampler'
|
||||
"""
|
||||
return g.op(
|
||||
'mmcv::grid_sampler',
|
||||
'mmdeploy::grid_sampler',
|
||||
input,
|
||||
grid,
|
||||
interpolation_mode_i=interpolation_mode,
|
||||
|
|
|
@ -39,7 +39,7 @@ def instance_norm(g, input, num_groups, weight, bias, eps, cudnn_enabled):
|
|||
'Tensor'))
|
||||
|
||||
norm_reshaped = g.op(
|
||||
'mmcv::TRTInstanceNormalization',
|
||||
'mmdeploy::TRTInstanceNormalization',
|
||||
input_reshaped,
|
||||
weight_,
|
||||
bias_,
|
||||
|
|
|
@ -35,7 +35,7 @@ def test_mark():
|
|||
|
||||
nodes = onnx_model.graph.node
|
||||
assert nodes[0].op_type == 'Mark'
|
||||
assert nodes[0].domain == 'mmcv'
|
||||
assert nodes[0].domain == 'mmdeploy'
|
||||
assert attribute_to_dict(nodes[0].attribute) == dict(
|
||||
dtype=1,
|
||||
func='add',
|
||||
|
@ -46,7 +46,7 @@ def test_mark():
|
|||
shape=[2, 3, 4])
|
||||
|
||||
assert nodes[1].op_type == 'Mark'
|
||||
assert nodes[1].domain == 'mmcv'
|
||||
assert nodes[1].domain == 'mmdeploy'
|
||||
assert attribute_to_dict(nodes[1].attribute) == dict(
|
||||
dtype=1,
|
||||
func='add',
|
||||
|
@ -59,7 +59,7 @@ def test_mark():
|
|||
assert nodes[2].op_type == 'Add'
|
||||
|
||||
assert nodes[3].op_type == 'Mark'
|
||||
assert nodes[3].domain == 'mmcv'
|
||||
assert nodes[3].domain == 'mmdeploy'
|
||||
assert attribute_to_dict(nodes[3].attribute) == dict(
|
||||
dtype=1,
|
||||
func='add',
|
||||
|
|
|
@ -20,7 +20,7 @@ def create_custom_module():
|
|||
|
||||
@staticmethod
|
||||
def symbolic(g, x, val):
|
||||
return g.op('mmcv::symbolic_old', x, val_i=val)
|
||||
return g.op('mmdeploy::symbolic_old', x, val_i=val)
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, x, val):
|
||||
|
@ -42,17 +42,17 @@ def test_symbolic_rewriter():
|
|||
@SYMBOLIC_REWRITER.register_symbolic('mmdeploy.TestFunc')
|
||||
def symbolic_testfunc_default(symbolic_wrapper, g, x, val):
|
||||
assert hasattr(symbolic_wrapper, 'cfg')
|
||||
return g.op('mmcv::symbolic_testfunc_default', x, val_i=val)
|
||||
return g.op('mmdeploy::symbolic_testfunc_default', x, val_i=val)
|
||||
|
||||
@SYMBOLIC_REWRITER.register_symbolic(
|
||||
'mmdeploy.TestFunc', backend='tensorrt')
|
||||
def symbolic_testfunc_tensorrt(symbolic_wrapper, g, x, val):
|
||||
return g.op('mmcv::symbolic_testfunc_tensorrt', x, val_i=val)
|
||||
return g.op('mmdeploy::symbolic_testfunc_tensorrt', x, val_i=val)
|
||||
|
||||
@SYMBOLIC_REWRITER.register_symbolic(
|
||||
'cummax', is_pytorch=True, arg_descriptors=['v', 'i'])
|
||||
def symbolic_cummax(symbolic_wrapper, g, input, dim):
|
||||
return g.op('mmcv::cummax_default', input, dim_i=dim, outputs=2)
|
||||
return g.op('mmdeploy::cummax_default', input, dim_i=dim, outputs=2)
|
||||
|
||||
class TestModel(torch.nn.Module):
|
||||
|
||||
|
@ -74,9 +74,9 @@ def test_symbolic_rewriter():
|
|||
onnx_model = onnx.load(output_file)
|
||||
nodes = onnx_model.graph.node
|
||||
assert nodes[0].op_type == 'symbolic_testfunc_default'
|
||||
assert nodes[0].domain == 'mmcv'
|
||||
assert nodes[0].domain == 'mmdeploy'
|
||||
assert nodes[1].op_type == 'cummax_default'
|
||||
assert nodes[1].domain == 'mmcv'
|
||||
assert nodes[1].domain == 'mmdeploy'
|
||||
|
||||
# ncnn
|
||||
with RewriterContext(cfg=cfg, backend='ncnn', opset=11):
|
||||
|
@ -84,9 +84,9 @@ def test_symbolic_rewriter():
|
|||
onnx_model = onnx.load(output_file)
|
||||
nodes = onnx_model.graph.node
|
||||
assert nodes[0].op_type == 'symbolic_testfunc_default'
|
||||
assert nodes[0].domain == 'mmcv'
|
||||
assert nodes[0].domain == 'mmdeploy'
|
||||
assert nodes[1].op_type == 'cummax_default'
|
||||
assert nodes[1].domain == 'mmcv'
|
||||
assert nodes[1].domain == 'mmdeploy'
|
||||
|
||||
# tensorrt
|
||||
with RewriterContext(cfg=cfg, backend='tensorrt', opset=11):
|
||||
|
@ -94,9 +94,9 @@ def test_symbolic_rewriter():
|
|||
onnx_model = onnx.load(output_file)
|
||||
nodes = onnx_model.graph.node
|
||||
assert nodes[0].op_type == 'symbolic_testfunc_tensorrt'
|
||||
assert nodes[0].domain == 'mmcv'
|
||||
assert nodes[0].domain == 'mmdeploy'
|
||||
assert nodes[1].op_type == 'cummax_default'
|
||||
assert nodes[1].domain == 'mmcv'
|
||||
assert nodes[1].domain == 'mmdeploy'
|
||||
|
||||
|
||||
def test_unregister():
|
||||
|
@ -104,12 +104,12 @@ def test_unregister():
|
|||
|
||||
@SYMBOLIC_REWRITER.register_symbolic('mmdeploy.TestFunc')
|
||||
def symbolic_testfunc_default(symbolic_wrapper, g, x, val):
|
||||
return g.op('mmcv::symbolic_testfunc_default', x, val_i=val)
|
||||
return g.op('mmdeploy::symbolic_testfunc_default', x, val_i=val)
|
||||
|
||||
@SYMBOLIC_REWRITER.register_symbolic(
|
||||
'cummax', is_pytorch=True, arg_descriptors=['v', 'i'])
|
||||
def symbolic_cummax(symbolic_wrapper, g, input, dim):
|
||||
return g.op('mmcv::cummax_default', input, dim_i=dim, outputs=2)
|
||||
return g.op('mmdeploy::cummax_default', input, dim_i=dim, outputs=2)
|
||||
|
||||
class TestModel(torch.nn.Module):
|
||||
|
||||
|
@ -135,7 +135,7 @@ def test_unregister():
|
|||
onnx_model = onnx.load(output_file)
|
||||
nodes = onnx_model.graph.node
|
||||
assert nodes[0].op_type == 'cummax_default'
|
||||
assert nodes[0].domain == 'mmcv'
|
||||
assert nodes[0].domain == 'mmdeploy'
|
||||
|
||||
with pytest.raises(RuntimeError):
|
||||
torch.onnx.export(model, x, output_file, opset_version=11)
|
||||
|
@ -146,13 +146,13 @@ def test_unregister():
|
|||
onnx_model = onnx.load(output_file)
|
||||
nodes = onnx_model.graph.node
|
||||
assert nodes[0].op_type == 'symbolic_testfunc_default'
|
||||
assert nodes[0].domain == 'mmcv'
|
||||
assert nodes[0].domain == 'mmdeploy'
|
||||
|
||||
torch.onnx.export(model, x, output_file, opset_version=11)
|
||||
onnx_model = onnx.load(output_file)
|
||||
nodes = onnx_model.graph.node
|
||||
assert nodes[0].op_type == 'symbolic_old'
|
||||
assert nodes[0].domain == 'mmcv'
|
||||
assert nodes[0].domain == 'mmdeploy'
|
||||
|
||||
|
||||
def test_register_empty_symbolic():
|
||||
|
@ -160,7 +160,7 @@ def test_register_empty_symbolic():
|
|||
|
||||
@symbolic_rewriter.register_symbolic('mmdeploy.EmptyFunction')
|
||||
def symbolic_testfunc_default(symbolic_wrapper, g, x, val):
|
||||
return g.op('mmcv::symbolic_testfunc_default', x, val_i=val)
|
||||
return g.op('mmdeploy::symbolic_testfunc_default', x, val_i=val)
|
||||
|
||||
symbolic_rewriter.enter()
|
||||
assert len(symbolic_rewriter._extra_symbolic) == 0
|
||||
|
|
|
@ -384,7 +384,7 @@ def test_multi_level_roi_align(backend,
|
|||
input_name, ['bbox_feats'],
|
||||
'MMCVMultiLevelRoiAlign_0',
|
||||
None,
|
||||
'mmlab',
|
||||
'mmdeploy',
|
||||
aligned=aligned,
|
||||
featmap_strides=featmap_strides,
|
||||
finest_scale=finest_scale,
|
||||
|
@ -397,7 +397,7 @@ def test_multi_level_roi_align(backend,
|
|||
graph, producer_name='pytorch', producer_version='1.8')
|
||||
onnx_model.opset_import[0].version = 11
|
||||
onnx_model.opset_import.append(
|
||||
onnx.onnx_ml_pb2.OperatorSetIdProto(domain='mmlab', version=1))
|
||||
onnx.onnx_ml_pb2.OperatorSetIdProto(domain='mmdeploy', version=1))
|
||||
|
||||
backend.run_and_validate(
|
||||
onnx_model, [rois, *input],
|
||||
|
|
|
@ -85,7 +85,7 @@ def test_grid_sampler():
|
|||
model = OpModel(torch.grid_sampler, flow, 0, 0, False).eval()
|
||||
nodes = get_model_onnx_nodes(model, x)
|
||||
assert nodes[1].op_type == 'grid_sampler'
|
||||
assert nodes[1].domain == 'mmcv'
|
||||
assert nodes[1].domain == 'mmdeploy'
|
||||
|
||||
|
||||
def test_instance_norm():
|
||||
|
@ -94,7 +94,7 @@ def test_instance_norm():
|
|||
1e-05).eval()
|
||||
nodes = get_model_onnx_nodes(model, x)
|
||||
assert nodes[4].op_type == 'TRTInstanceNormalization'
|
||||
assert nodes[4].domain == 'mmcv'
|
||||
assert nodes[4].domain == 'mmdeploy'
|
||||
|
||||
|
||||
class TestSqueeze:
|
||||
|
|
Loading…
Reference in New Issue