bump version to v1.1.0 (#2094)

This commit is contained in:
RunningLeon 2023-05-23 13:32:44 +08:00 committed by GitHub
parent 8670d838cb
commit e47c6400b0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 51 additions and 51 deletions

View File

@ -5,7 +5,7 @@ endif ()
message(STATUS "CMAKE_INSTALL_PREFIX: ${CMAKE_INSTALL_PREFIX}") message(STATUS "CMAKE_INSTALL_PREFIX: ${CMAKE_INSTALL_PREFIX}")
cmake_minimum_required(VERSION 3.14) cmake_minimum_required(VERSION 3.14)
project(MMDeploy VERSION 0.13.0) project(MMDeploy VERSION 1.1.0)
set(CMAKE_CXX_STANDARD 17) set(CMAKE_CXX_STANDARD 17)

View File

@ -33,14 +33,14 @@ There are two methods to build the nuget package.
(*option 1*) Use the command. (*option 1*) Use the command.
If your environment is well prepared, you can just go to the `csrc\apis\csharp` folder, open a terminal and type the following command, the nupkg will be built in `csrc\apis\csharp\MMDeploy\bin\Release\MMDeployCSharp.1.0.0.nupkg`. If your environment is well prepared, you can just go to the `csrc\apis\csharp` folder, open a terminal and type the following command, the nupkg will be built in `csrc\apis\csharp\MMDeploy\bin\Release\MMDeployCSharp.1.1.0.nupkg`.
```shell ```shell
dotnet build --configuration Release -p:Version=1.0.0 dotnet build --configuration Release -p:Version=1.1.0
``` ```
(*option 2*) Open MMDeploy.sln && Build. (*option 2*) Open MMDeploy.sln && Build.
You can set the package-version through `Properties -> Package Version`. The default version is 1.0.0 if you don't set it. You can set the package-version through `Properties -> Package Version`. The default version is 1.1.0 if you don't set it.
If you encounter missing dependencies, follow the instructions for MSVC. If you encounter missing dependencies, follow the instructions for MSVC.

View File

@ -14,7 +14,7 @@
</PropertyGroup> </PropertyGroup>
<ItemGroup> <ItemGroup>
<PackageReference Include="MMDeployCSharp" Version="1.0.0" /> <PackageReference Include="MMDeployCSharp" Version="1.1.0" />
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" /> <PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
<PackageReference Include="OpenCvSharp4.Extensions" Version="4.5.5.20211231" /> <PackageReference Include="OpenCvSharp4.Extensions" Version="4.5.5.20211231" />
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" /> <PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />

View File

@ -14,7 +14,7 @@
</PropertyGroup> </PropertyGroup>
<ItemGroup> <ItemGroup>
<PackageReference Include="MMDeployCSharp" Version="1.0.0" /> <PackageReference Include="MMDeployCSharp" Version="1.1.0" />
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" /> <PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" /> <PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />
</ItemGroup> </ItemGroup>

View File

@ -14,7 +14,7 @@
</PropertyGroup> </PropertyGroup>
<ItemGroup> <ItemGroup>
<PackageReference Include="MMDeployCSharp" Version="1.0.0" /> <PackageReference Include="MMDeployCSharp" Version="1.1.0" />
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" /> <PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" /> <PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />
</ItemGroup> </ItemGroup>

View File

@ -14,7 +14,7 @@
</PropertyGroup> </PropertyGroup>
<ItemGroup> <ItemGroup>
<PackageReference Include="MMDeployCSharp" Version="1.0.0" /> <PackageReference Include="MMDeployCSharp" Version="1.1.0" />
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" /> <PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" /> <PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />
</ItemGroup> </ItemGroup>

View File

@ -14,7 +14,7 @@
</PropertyGroup> </PropertyGroup>
<ItemGroup> <ItemGroup>
<PackageReference Include="MMDeployCSharp" Version="1.0.0" /> <PackageReference Include="MMDeployCSharp" Version="1.1.0" />
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" /> <PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" /> <PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />
</ItemGroup> </ItemGroup>

View File

@ -14,7 +14,7 @@
</PropertyGroup> </PropertyGroup>
<ItemGroup> <ItemGroup>
<PackageReference Include="MMDeployCSharp" Version="1.0.0" /> <PackageReference Include="MMDeployCSharp" Version="1.1.0" />
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" /> <PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" /> <PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />
</ItemGroup> </ItemGroup>

View File

@ -14,7 +14,7 @@
</PropertyGroup> </PropertyGroup>
<ItemGroup> <ItemGroup>
<PackageReference Include="MMDeployCSharp" Version="1.0.0" /> <PackageReference Include="MMDeployCSharp" Version="1.1.0" />
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" /> <PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" /> <PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />
</ItemGroup> </ItemGroup>

View File

@ -21,7 +21,7 @@
______________________________________________________________________ ______________________________________________________________________
This tutorial takes `mmdeploy-1.0.0-windows-amd64.zip` and `mmdeploy-1.0.0-windows-amd64-cuda11.3.zip` as examples to show how to use the prebuilt packages. The former support onnxruntime cpu inference, the latter support onnxruntime-gpu and tensorrt inference. This tutorial takes `mmdeploy-1.1.0-windows-amd64.zip` and `mmdeploy-1.1.0-windows-amd64-cuda11.3.zip` as examples to show how to use the prebuilt packages. The former support onnxruntime cpu inference, the latter support onnxruntime-gpu and tensorrt inference.
The directory structure of the prebuilt package is as follows, where the `dist` folder is about model converter, and the `sdk` folder is related to model inference. The directory structure of the prebuilt package is as follows, where the `dist` folder is about model converter, and the `sdk` folder is related to model inference.
@ -81,8 +81,8 @@ In order to use `ONNX Runtime` backend, you should also do the following steps.
5. Install `mmdeploy` (Model Converter) and `mmdeploy_runtime` (SDK Python API). 5. Install `mmdeploy` (Model Converter) and `mmdeploy_runtime` (SDK Python API).
```bash ```bash
pip install mmdeploy==1.0.0 pip install mmdeploy==1.1.0
pip install mmdeploy-runtime==1.0.0 pip install mmdeploy-runtime==1.1.0
``` ```
:point_right: If you have installed it before, please uninstall it first. :point_right: If you have installed it before, please uninstall it first.
@ -100,7 +100,7 @@ In order to use `ONNX Runtime` backend, you should also do the following steps.
![sys-path](https://user-images.githubusercontent.com/16019484/181463801-1d7814a8-b256-46e9-86f2-c08de0bc150b.png) ![sys-path](https://user-images.githubusercontent.com/16019484/181463801-1d7814a8-b256-46e9-86f2-c08de0bc150b.png)
:exclamation: Restart powershell to make the environment variables setting take effect. You can check whether the settings are in effect by `echo $env:PATH`. :exclamation: Restart powershell to make the environment variables setting take effect. You can check whether the settings are in effect by `echo $env:PATH`.
8. Download SDK C/cpp Library mmdeploy-1.0.0-windows-amd64.zip 8. Download SDK C/cpp Library mmdeploy-1.1.0-windows-amd64.zip
### TensorRT ### TensorRT
@ -109,8 +109,8 @@ In order to use `TensorRT` backend, you should also do the following steps.
5. Install `mmdeploy` (Model Converter) and `mmdeploy_runtime` (SDK Python API). 5. Install `mmdeploy` (Model Converter) and `mmdeploy_runtime` (SDK Python API).
```bash ```bash
pip install mmdeploy==1.0.0 pip install mmdeploy==1.1.0
pip install mmdeploy-runtime-gpu==1.0.0 pip install mmdeploy-runtime-gpu==1.1.0
``` ```
:point_right: If you have installed it before, please uninstall it first. :point_right: If you have installed it before, please uninstall it first.
@ -129,7 +129,7 @@ In order to use `TensorRT` backend, you should also do the following steps.
7. Install pycuda by `pip install pycuda` 7. Install pycuda by `pip install pycuda`
8. Download SDK C/cpp Library mmdeploy-1.0.0-windows-amd64-cuda11.3.zip 8. Download SDK C/cpp Library mmdeploy-1.1.0-windows-amd64-cuda11.3.zip
## Model Convert ## Model Convert
@ -141,7 +141,7 @@ After preparation work, the structure of the current working directory should be
``` ```
.. ..
|-- mmdeploy-1.0.0-windows-amd64 |-- mmdeploy-1.1.0-windows-amd64
|-- mmpretrain |-- mmpretrain
|-- mmdeploy |-- mmdeploy
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth `-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
@ -189,7 +189,7 @@ After installation of mmdeploy-tensorrt prebuilt package, the structure of the c
``` ```
.. ..
|-- mmdeploy-1.0.0-windows-amd64-cuda11.3 |-- mmdeploy-1.1.0-windows-amd64-cuda11.3
|-- mmpretrain |-- mmpretrain
|-- mmdeploy |-- mmdeploy
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth `-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
@ -252,8 +252,8 @@ The structure of current working directory
``` ```
. .
|-- mmdeploy-1.0.0-windows-amd64 |-- mmdeploy-1.1.0-windows-amd64
|-- mmdeploy-1.0.0-windows-amd64-cuda11.3 |-- mmdeploy-1.1.0-windows-amd64-cuda11.3
|-- mmpretrain |-- mmpretrain
|-- mmdeploy |-- mmdeploy
|-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth |-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
@ -324,7 +324,7 @@ The following describes how to use the SDK's C API for inference
It is recommended to use `CMD` here. It is recommended to use `CMD` here.
Under `mmdeploy-1.0.0-windows-amd64\\example\\cpp\\build\\Release` directory Under `mmdeploy-1.1.0-windows-amd64\\example\\cpp\\build\\Release` directory
``` ```
.\image_classification.exe cpu C:\workspace\work_dir\onnx\resnet\ C:\workspace\mmpretrain\demo\demo.JPEG .\image_classification.exe cpu C:\workspace\work_dir\onnx\resnet\ C:\workspace\mmpretrain\demo\demo.JPEG
@ -344,7 +344,7 @@ The following describes how to use the SDK's C API for inference
It is recommended to use `CMD` here. It is recommended to use `CMD` here.
Under `mmdeploy-1.0.0-windows-amd64-cuda11.3\\example\\cpp\\build\\Release` directory Under `mmdeploy-1.1.0-windows-amd64-cuda11.3\\example\\cpp\\build\\Release` directory
``` ```
.\image_classification.exe cuda C:\workspace\work_dir\trt\resnet C:\workspace\mmpretrain\demo\demo.JPEG .\image_classification.exe cuda C:\workspace\work_dir\trt\resnet C:\workspace\mmpretrain\demo\demo.JPEG

View File

@ -118,14 +118,14 @@ Take the latest precompiled package as example, you can install it as follows:
```shell ```shell
# 1. install MMDeploy model converter # 1. install MMDeploy model converter
pip install mmdeploy==1.0.0 pip install mmdeploy==1.1.0
# 2. install MMDeploy sdk inference # 2. install MMDeploy sdk inference
# you can install one to install according whether you need gpu inference # you can install one to install according whether you need gpu inference
# 2.1 support onnxruntime # 2.1 support onnxruntime
pip install mmdeploy-runtime==1.0.0 pip install mmdeploy-runtime==1.1.0
# 2.2 support onnxruntime-gpu, tensorrt # 2.2 support onnxruntime-gpu, tensorrt
pip install mmdeploy-runtime-gpu==1.0.0 pip install mmdeploy-runtime-gpu==1.1.0
# 3. install inference engine # 3. install inference engine
# 3.1 install TensorRT # 3.1 install TensorRT
@ -230,9 +230,9 @@ result = inference_model(
You can directly run MMDeploy demo programs in the precompiled package to get inference results. You can directly run MMDeploy demo programs in the precompiled package to get inference results.
```shell ```shell
wget https://github.com/open-mmlab/mmdeploy/releases/download/v1.0.0/mmdeploy-1.0.0-linux-x86_64-cuda11.3.tar.gz wget https://github.com/open-mmlab/mmdeploy/releases/download/v1.1.0/mmdeploy-1.1.0-linux-x86_64-cuda11.3.tar.gz
tar xf mmdeploy-1.0.0-linux-x86_64-cuda11.3 tar xf mmdeploy-1.1.0-linux-x86_64-cuda11.3
cd mmdeploy-1.0.0-linux-x86_64-cuda11.3 cd mmdeploy-1.1.0-linux-x86_64-cuda11.3
# run python demo # run python demo
python example/python/object_detection.py cuda ../mmdeploy_model/faster-rcnn ../mmdetection/demo/demo.jpg python example/python/object_detection.py cuda ../mmdeploy_model/faster-rcnn ../mmdetection/demo/demo.jpg
# run C/C++ demo # run C/C++ demo

View File

@ -23,7 +23,7 @@ ______________________________________________________________________
目前,`MMDeploy``Windows`平台下提供`cpu`以及`cuda`两种Device的预编译包其中`cpu`版支持使用onnxruntime cpu进行推理`cuda`版支持使用onnxruntime-gpu以及tensorrt进行推理可以从[Releases](https://github.com/open-mmlab/mmdeploy/releases)获取。。 目前,`MMDeploy``Windows`平台下提供`cpu`以及`cuda`两种Device的预编译包其中`cpu`版支持使用onnxruntime cpu进行推理`cuda`版支持使用onnxruntime-gpu以及tensorrt进行推理可以从[Releases](https://github.com/open-mmlab/mmdeploy/releases)获取。。
本篇教程以`mmdeploy-1.0.0-windows-amd64.zip`和`mmdeploy-1.0.0-windows-amd64-cuda11.3.zip`为例,展示预编译包的使用方法。 本篇教程以`mmdeploy-1.1.0-windows-amd64.zip`和`mmdeploy-1.1.0-windows-amd64-cuda11.3.zip`为例,展示预编译包的使用方法。
为了方便使用者快速上手,本教程以分类模型(mmpretrain)为例,展示两种预编译包的使用方法。 为了方便使用者快速上手,本教程以分类模型(mmpretrain)为例,展示两种预编译包的使用方法。
@ -89,8 +89,8 @@ ______________________________________________________________________
5. 安装`mmdeploy`(模型转换)以及`mmdeploy_runtime`模型推理Python API的预编译包 5. 安装`mmdeploy`(模型转换)以及`mmdeploy_runtime`模型推理Python API的预编译包
```bash ```bash
pip install mmdeploy==1.0.0 pip install mmdeploy==1.1.0
pip install mmdeploy-runtime==1.0.0 pip install mmdeploy-runtime==1.1.0
``` ```
:point_right: 如果之前安装过,需要先卸载后再安装。 :point_right: 如果之前安装过,需要先卸载后再安装。
@ -108,7 +108,7 @@ ______________________________________________________________________
![sys-path](https://user-images.githubusercontent.com/16019484/181463801-1d7814a8-b256-46e9-86f2-c08de0bc150b.png) ![sys-path](https://user-images.githubusercontent.com/16019484/181463801-1d7814a8-b256-46e9-86f2-c08de0bc150b.png)
:exclamation: 重启powershell让环境变量生效可以通过 echo $env:PATH 来检查是否设置成功。 :exclamation: 重启powershell让环境变量生效可以通过 echo $env:PATH 来检查是否设置成功。
8. 下载 SDK C/cpp Library mmdeploy-1.0.0-windows-amd64.zip 8. 下载 SDK C/cpp Library mmdeploy-1.1.0-windows-amd64.zip
### TensorRT ### TensorRT
@ -117,8 +117,8 @@ ______________________________________________________________________
5. 安装`mmdeploy`(模型转换)以及`mmdeploy_runtime`模型推理Python API的预编译包 5. 安装`mmdeploy`(模型转换)以及`mmdeploy_runtime`模型推理Python API的预编译包
```bash ```bash
pip install mmdeploy==1.0.0 pip install mmdeploy==1.1.0
pip install mmdeploy-runtime-gpu==1.0.0 pip install mmdeploy-runtime-gpu==1.1.0
``` ```
:point_right: 如果之前安装过,需要先卸载后再安装 :point_right: 如果之前安装过,需要先卸载后再安装
@ -137,7 +137,7 @@ ______________________________________________________________________
7. 安装pycuda `pip install pycuda` 7. 安装pycuda `pip install pycuda`
8. 下载 SDK C/cpp Library mmdeploy-1.0.0-windows-amd64-cuda11.3.zip 8. 下载 SDK C/cpp Library mmdeploy-1.1.0-windows-amd64-cuda11.3.zip
## 模型转换 ## 模型转换
@ -149,7 +149,7 @@ ______________________________________________________________________
``` ```
.. ..
|-- mmdeploy-1.0.0-windows-amd64 |-- mmdeploy-1.1.0-windows-amd64
|-- mmpretrain |-- mmpretrain
|-- mmdeploy |-- mmdeploy
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth `-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
@ -197,7 +197,7 @@ export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)
``` ```
.. ..
|-- mmdeploy-1.0.0-windows-amd64-cuda11.3 |-- mmdeploy-1.1.0-windows-amd64-cuda11.3
|-- mmpretrain |-- mmpretrain
|-- mmdeploy |-- mmdeploy
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth `-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
@ -260,8 +260,8 @@ export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)
``` ```
. .
|-- mmdeploy-1.0.0-windows-amd64 |-- mmdeploy-1.1.0-windows-amd64
|-- mmdeploy-1.0.0-windows-amd64-cuda11.3 |-- mmdeploy-1.1.0-windows-amd64-cuda11.3
|-- mmpretrain |-- mmpretrain
|-- mmdeploy |-- mmdeploy
|-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth |-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
@ -340,7 +340,7 @@ python .\mmdeploy\demo\python\image_classification.py cpu .\work_dir\onnx\resnet
这里建议使用cmd这样如果exe运行时如果找不到相关的dll的话会有弹窗 这里建议使用cmd这样如果exe运行时如果找不到相关的dll的话会有弹窗
在mmdeploy-1.0.0-windows-amd64\\example\\cpp\\build\\Release目录下 在mmdeploy-1.1.0-windows-amd64\\example\\cpp\\build\\Release目录下
``` ```
.\image_classification.exe cpu C:\workspace\work_dir\onnx\resnet\ C:\workspace\mmpretrain\demo\demo.JPEG .\image_classification.exe cpu C:\workspace\work_dir\onnx\resnet\ C:\workspace\mmpretrain\demo\demo.JPEG
@ -360,7 +360,7 @@ python .\mmdeploy\demo\python\image_classification.py cpu .\work_dir\onnx\resnet
这里建议使用cmd这样如果exe运行时如果找不到相关的dll的话会有弹窗 这里建议使用cmd这样如果exe运行时如果找不到相关的dll的话会有弹窗
在mmdeploy-1.0.0-windows-amd64-cuda11.3\\example\\cpp\\build\\Release目录下 在mmdeploy-1.1.0-windows-amd64-cuda11.3\\example\\cpp\\build\\Release目录下
``` ```
.\image_classification.exe cuda C:\workspace\work_dir\trt\resnet C:\workspace\mmpretrain\demo\demo.JPEG .\image_classification.exe cuda C:\workspace\work_dir\trt\resnet C:\workspace\mmpretrain\demo\demo.JPEG

View File

@ -113,14 +113,14 @@ mim install "mmcv>=2.0.0rc2"
```shell ```shell
# 1. 安装 MMDeploy 模型转换工具含trt/ort自定义算子 # 1. 安装 MMDeploy 模型转换工具含trt/ort自定义算子
pip install mmdeploy==1.0.0 pip install mmdeploy==1.1.0
# 2. 安装 MMDeploy SDK推理工具 # 2. 安装 MMDeploy SDK推理工具
# 根据是否需要GPU推理可任选其一进行下载安装 # 根据是否需要GPU推理可任选其一进行下载安装
# 2.1 支持 onnxruntime 推理 # 2.1 支持 onnxruntime 推理
pip install mmdeploy-runtime==1.0.0 pip install mmdeploy-runtime==1.1.0
# 2.2 支持 onnxruntime-gpu tensorrt 推理 # 2.2 支持 onnxruntime-gpu tensorrt 推理
pip install mmdeploy-runtime-gpu==1.0.0 pip install mmdeploy-runtime-gpu==1.1.0
# 3. 安装推理引擎 # 3. 安装推理引擎
# 3.1 安装推理引擎 TensorRT # 3.1 安装推理引擎 TensorRT
@ -223,10 +223,10 @@ result = inference_model(
你可以直接运行预编译包中的 demo 程序,输入 SDK Model 和图像,进行推理,并查看推理结果。 你可以直接运行预编译包中的 demo 程序,输入 SDK Model 和图像,进行推理,并查看推理结果。
```shell ```shell
wget https://github.com/open-mmlab/mmdeploy/releases/download/v1.0.0/mmdeploy-1.0.0-linux-x86_64-cuda11.3.tar.gz wget https://github.com/open-mmlab/mmdeploy/releases/download/v1.1.0/mmdeploy-1.1.0-linux-x86_64-cuda11.3.tar.gz
tar xf mmdeploy-1.0.0-linux-x86_64-cuda11.3 tar xf mmdeploy-1.1.0-linux-x86_64-cuda11.3
cd mmdeploy-1.0.0-linux-x86_64-cuda11.3 cd mmdeploy-1.1.0-linux-x86_64-cuda11.3
# 运行 python demo # 运行 python demo
python example/python/object_detection.py cuda ../mmdeploy_model/faster-rcnn ../mmdetection/demo/demo.jpg python example/python/object_detection.py cuda ../mmdeploy_model/faster-rcnn ../mmdetection/demo/demo.jpg
# 运行 C/C++ demo # 运行 C/C++ demo

View File

@ -1,7 +1,7 @@
# Copyright (c) OpenMMLab. All rights reserved. # Copyright (c) OpenMMLab. All rights reserved.
from typing import Tuple from typing import Tuple
__version__ = '1.0.0' __version__ = '1.1.0'
short_version = __version__ short_version = __version__

View File

@ -1,2 +1,2 @@
# Copyright (c) OpenMMLab. All rights reserved. # Copyright (c) OpenMMLab. All rights reserved.
__version__ = '1.0.0' __version__ = '1.1.0'