bump version to v1.1.0 (#2094)

pull/2107/head
RunningLeon 2023-05-23 13:32:44 +08:00 committed by GitHub
parent 8670d838cb
commit e47c6400b0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 51 additions and 51 deletions

View File

@ -5,7 +5,7 @@ endif ()
message(STATUS "CMAKE_INSTALL_PREFIX: ${CMAKE_INSTALL_PREFIX}")
cmake_minimum_required(VERSION 3.14)
project(MMDeploy VERSION 0.13.0)
project(MMDeploy VERSION 1.1.0)
set(CMAKE_CXX_STANDARD 17)

View File

@ -33,14 +33,14 @@ There are two methods to build the nuget package.
(*option 1*) Use the command.
If your environment is well prepared, you can just go to the `csrc\apis\csharp` folder, open a terminal and type the following command, the nupkg will be built in `csrc\apis\csharp\MMDeploy\bin\Release\MMDeployCSharp.1.0.0.nupkg`.
If your environment is well prepared, you can just go to the `csrc\apis\csharp` folder, open a terminal and type the following command, the nupkg will be built in `csrc\apis\csharp\MMDeploy\bin\Release\MMDeployCSharp.1.1.0.nupkg`.
```shell
dotnet build --configuration Release -p:Version=1.0.0
dotnet build --configuration Release -p:Version=1.1.0
```
(*option 2*) Open MMDeploy.sln && Build.
You can set the package-version through `Properties -> Package Version`. The default version is 1.0.0 if you don't set it.
You can set the package-version through `Properties -> Package Version`. The default version is 1.1.0 if you don't set it.
If you encounter missing dependencies, follow the instructions for MSVC.

View File

@ -14,7 +14,7 @@
</PropertyGroup>
<ItemGroup>
<PackageReference Include="MMDeployCSharp" Version="1.0.0" />
<PackageReference Include="MMDeployCSharp" Version="1.1.0" />
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
<PackageReference Include="OpenCvSharp4.Extensions" Version="4.5.5.20211231" />
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />

View File

@ -14,7 +14,7 @@
</PropertyGroup>
<ItemGroup>
<PackageReference Include="MMDeployCSharp" Version="1.0.0" />
<PackageReference Include="MMDeployCSharp" Version="1.1.0" />
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />
</ItemGroup>

View File

@ -14,7 +14,7 @@
</PropertyGroup>
<ItemGroup>
<PackageReference Include="MMDeployCSharp" Version="1.0.0" />
<PackageReference Include="MMDeployCSharp" Version="1.1.0" />
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />
</ItemGroup>

View File

@ -14,7 +14,7 @@
</PropertyGroup>
<ItemGroup>
<PackageReference Include="MMDeployCSharp" Version="1.0.0" />
<PackageReference Include="MMDeployCSharp" Version="1.1.0" />
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />
</ItemGroup>

View File

@ -14,7 +14,7 @@
</PropertyGroup>
<ItemGroup>
<PackageReference Include="MMDeployCSharp" Version="1.0.0" />
<PackageReference Include="MMDeployCSharp" Version="1.1.0" />
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />
</ItemGroup>

View File

@ -14,7 +14,7 @@
</PropertyGroup>
<ItemGroup>
<PackageReference Include="MMDeployCSharp" Version="1.0.0" />
<PackageReference Include="MMDeployCSharp" Version="1.1.0" />
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />
</ItemGroup>

View File

@ -14,7 +14,7 @@
</PropertyGroup>
<ItemGroup>
<PackageReference Include="MMDeployCSharp" Version="1.0.0" />
<PackageReference Include="MMDeployCSharp" Version="1.1.0" />
<PackageReference Include="OpenCvSharp4" Version="4.5.5.20211231" />
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.5.5.20211231" />
</ItemGroup>

View File

@ -21,7 +21,7 @@
______________________________________________________________________
This tutorial takes `mmdeploy-1.0.0-windows-amd64.zip` and `mmdeploy-1.0.0-windows-amd64-cuda11.3.zip` as examples to show how to use the prebuilt packages. The former support onnxruntime cpu inference, the latter support onnxruntime-gpu and tensorrt inference.
This tutorial takes `mmdeploy-1.1.0-windows-amd64.zip` and `mmdeploy-1.1.0-windows-amd64-cuda11.3.zip` as examples to show how to use the prebuilt packages. The former support onnxruntime cpu inference, the latter support onnxruntime-gpu and tensorrt inference.
The directory structure of the prebuilt package is as follows, where the `dist` folder is about model converter, and the `sdk` folder is related to model inference.
@ -81,8 +81,8 @@ In order to use `ONNX Runtime` backend, you should also do the following steps.
5. Install `mmdeploy` (Model Converter) and `mmdeploy_runtime` (SDK Python API).
```bash
pip install mmdeploy==1.0.0
pip install mmdeploy-runtime==1.0.0
pip install mmdeploy==1.1.0
pip install mmdeploy-runtime==1.1.0
```
:point_right: If you have installed it before, please uninstall it first.
@ -100,7 +100,7 @@ In order to use `ONNX Runtime` backend, you should also do the following steps.
![sys-path](https://user-images.githubusercontent.com/16019484/181463801-1d7814a8-b256-46e9-86f2-c08de0bc150b.png)
:exclamation: Restart powershell to make the environment variables setting take effect. You can check whether the settings are in effect by `echo $env:PATH`.
8. Download SDK C/cpp Library mmdeploy-1.0.0-windows-amd64.zip
8. Download SDK C/cpp Library mmdeploy-1.1.0-windows-amd64.zip
### TensorRT
@ -109,8 +109,8 @@ In order to use `TensorRT` backend, you should also do the following steps.
5. Install `mmdeploy` (Model Converter) and `mmdeploy_runtime` (SDK Python API).
```bash
pip install mmdeploy==1.0.0
pip install mmdeploy-runtime-gpu==1.0.0
pip install mmdeploy==1.1.0
pip install mmdeploy-runtime-gpu==1.1.0
```
:point_right: If you have installed it before, please uninstall it first.
@ -129,7 +129,7 @@ In order to use `TensorRT` backend, you should also do the following steps.
7. Install pycuda by `pip install pycuda`
8. Download SDK C/cpp Library mmdeploy-1.0.0-windows-amd64-cuda11.3.zip
8. Download SDK C/cpp Library mmdeploy-1.1.0-windows-amd64-cuda11.3.zip
## Model Convert
@ -141,7 +141,7 @@ After preparation work, the structure of the current working directory should be
```
..
|-- mmdeploy-1.0.0-windows-amd64
|-- mmdeploy-1.1.0-windows-amd64
|-- mmpretrain
|-- mmdeploy
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
@ -189,7 +189,7 @@ After installation of mmdeploy-tensorrt prebuilt package, the structure of the c
```
..
|-- mmdeploy-1.0.0-windows-amd64-cuda11.3
|-- mmdeploy-1.1.0-windows-amd64-cuda11.3
|-- mmpretrain
|-- mmdeploy
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
@ -252,8 +252,8 @@ The structure of current working directory
```
.
|-- mmdeploy-1.0.0-windows-amd64
|-- mmdeploy-1.0.0-windows-amd64-cuda11.3
|-- mmdeploy-1.1.0-windows-amd64
|-- mmdeploy-1.1.0-windows-amd64-cuda11.3
|-- mmpretrain
|-- mmdeploy
|-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
@ -324,7 +324,7 @@ The following describes how to use the SDK's C API for inference
It is recommended to use `CMD` here.
Under `mmdeploy-1.0.0-windows-amd64\\example\\cpp\\build\\Release` directory
Under `mmdeploy-1.1.0-windows-amd64\\example\\cpp\\build\\Release` directory
```
.\image_classification.exe cpu C:\workspace\work_dir\onnx\resnet\ C:\workspace\mmpretrain\demo\demo.JPEG
@ -344,7 +344,7 @@ The following describes how to use the SDK's C API for inference
It is recommended to use `CMD` here.
Under `mmdeploy-1.0.0-windows-amd64-cuda11.3\\example\\cpp\\build\\Release` directory
Under `mmdeploy-1.1.0-windows-amd64-cuda11.3\\example\\cpp\\build\\Release` directory
```
.\image_classification.exe cuda C:\workspace\work_dir\trt\resnet C:\workspace\mmpretrain\demo\demo.JPEG

View File

@ -118,14 +118,14 @@ Take the latest precompiled package as example, you can install it as follows:
```shell
# 1. install MMDeploy model converter
pip install mmdeploy==1.0.0
pip install mmdeploy==1.1.0
# 2. install MMDeploy sdk inference
# you can install one to install according whether you need gpu inference
# 2.1 support onnxruntime
pip install mmdeploy-runtime==1.0.0
pip install mmdeploy-runtime==1.1.0
# 2.2 support onnxruntime-gpu, tensorrt
pip install mmdeploy-runtime-gpu==1.0.0
pip install mmdeploy-runtime-gpu==1.1.0
# 3. install inference engine
# 3.1 install TensorRT
@ -230,9 +230,9 @@ result = inference_model(
You can directly run MMDeploy demo programs in the precompiled package to get inference results.
```shell
wget https://github.com/open-mmlab/mmdeploy/releases/download/v1.0.0/mmdeploy-1.0.0-linux-x86_64-cuda11.3.tar.gz
tar xf mmdeploy-1.0.0-linux-x86_64-cuda11.3
cd mmdeploy-1.0.0-linux-x86_64-cuda11.3
wget https://github.com/open-mmlab/mmdeploy/releases/download/v1.1.0/mmdeploy-1.1.0-linux-x86_64-cuda11.3.tar.gz
tar xf mmdeploy-1.1.0-linux-x86_64-cuda11.3
cd mmdeploy-1.1.0-linux-x86_64-cuda11.3
# run python demo
python example/python/object_detection.py cuda ../mmdeploy_model/faster-rcnn ../mmdetection/demo/demo.jpg
# run C/C++ demo

View File

@ -23,7 +23,7 @@ ______________________________________________________________________
目前,`MMDeploy`在`Windows`平台下提供`cpu`以及`cuda`两种Device的预编译包其中`cpu`版支持使用onnxruntime cpu进行推理`cuda`版支持使用onnxruntime-gpu以及tensorrt进行推理可以从[Releases](https://github.com/open-mmlab/mmdeploy/releases)获取。。
本篇教程以`mmdeploy-1.0.0-windows-amd64.zip`和`mmdeploy-1.0.0-windows-amd64-cuda11.3.zip`为例,展示预编译包的使用方法。
本篇教程以`mmdeploy-1.1.0-windows-amd64.zip`和`mmdeploy-1.1.0-windows-amd64-cuda11.3.zip`为例,展示预编译包的使用方法。
为了方便使用者快速上手,本教程以分类模型(mmpretrain)为例,展示两种预编译包的使用方法。
@ -89,8 +89,8 @@ ______________________________________________________________________
5. 安装`mmdeploy`(模型转换)以及`mmdeploy_runtime`模型推理Python API的预编译包
```bash
pip install mmdeploy==1.0.0
pip install mmdeploy-runtime==1.0.0
pip install mmdeploy==1.1.0
pip install mmdeploy-runtime==1.1.0
```
:point_right: 如果之前安装过,需要先卸载后再安装。
@ -108,7 +108,7 @@ ______________________________________________________________________
![sys-path](https://user-images.githubusercontent.com/16019484/181463801-1d7814a8-b256-46e9-86f2-c08de0bc150b.png)
:exclamation: 重启powershell让环境变量生效可以通过 echo $env:PATH 来检查是否设置成功。
8. 下载 SDK C/cpp Library mmdeploy-1.0.0-windows-amd64.zip
8. 下载 SDK C/cpp Library mmdeploy-1.1.0-windows-amd64.zip
### TensorRT
@ -117,8 +117,8 @@ ______________________________________________________________________
5. 安装`mmdeploy`(模型转换)以及`mmdeploy_runtime`模型推理Python API的预编译包
```bash
pip install mmdeploy==1.0.0
pip install mmdeploy-runtime-gpu==1.0.0
pip install mmdeploy==1.1.0
pip install mmdeploy-runtime-gpu==1.1.0
```
:point_right: 如果之前安装过,需要先卸载后再安装
@ -137,7 +137,7 @@ ______________________________________________________________________
7. 安装pycuda `pip install pycuda`
8. 下载 SDK C/cpp Library mmdeploy-1.0.0-windows-amd64-cuda11.3.zip
8. 下载 SDK C/cpp Library mmdeploy-1.1.0-windows-amd64-cuda11.3.zip
## 模型转换
@ -149,7 +149,7 @@ ______________________________________________________________________
```
..
|-- mmdeploy-1.0.0-windows-amd64
|-- mmdeploy-1.1.0-windows-amd64
|-- mmpretrain
|-- mmdeploy
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
@ -197,7 +197,7 @@ export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)
```
..
|-- mmdeploy-1.0.0-windows-amd64-cuda11.3
|-- mmdeploy-1.1.0-windows-amd64-cuda11.3
|-- mmpretrain
|-- mmdeploy
`-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
@ -260,8 +260,8 @@ export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)
```
.
|-- mmdeploy-1.0.0-windows-amd64
|-- mmdeploy-1.0.0-windows-amd64-cuda11.3
|-- mmdeploy-1.1.0-windows-amd64
|-- mmdeploy-1.1.0-windows-amd64-cuda11.3
|-- mmpretrain
|-- mmdeploy
|-- resnet18_8xb32_in1k_20210831-fbbb1da6.pth
@ -340,7 +340,7 @@ python .\mmdeploy\demo\python\image_classification.py cpu .\work_dir\onnx\resnet
这里建议使用cmd这样如果exe运行时如果找不到相关的dll的话会有弹窗
在mmdeploy-1.0.0-windows-amd64\\example\\cpp\\build\\Release目录下
在mmdeploy-1.1.0-windows-amd64\\example\\cpp\\build\\Release目录下
```
.\image_classification.exe cpu C:\workspace\work_dir\onnx\resnet\ C:\workspace\mmpretrain\demo\demo.JPEG
@ -360,7 +360,7 @@ python .\mmdeploy\demo\python\image_classification.py cpu .\work_dir\onnx\resnet
这里建议使用cmd这样如果exe运行时如果找不到相关的dll的话会有弹窗
在mmdeploy-1.0.0-windows-amd64-cuda11.3\\example\\cpp\\build\\Release目录下
在mmdeploy-1.1.0-windows-amd64-cuda11.3\\example\\cpp\\build\\Release目录下
```
.\image_classification.exe cuda C:\workspace\work_dir\trt\resnet C:\workspace\mmpretrain\demo\demo.JPEG

View File

@ -113,14 +113,14 @@ mim install "mmcv>=2.0.0rc2"
```shell
# 1. 安装 MMDeploy 模型转换工具含trt/ort自定义算子
pip install mmdeploy==1.0.0
pip install mmdeploy==1.1.0
# 2. 安装 MMDeploy SDK推理工具
# 根据是否需要GPU推理可任选其一进行下载安装
# 2.1 支持 onnxruntime 推理
pip install mmdeploy-runtime==1.0.0
pip install mmdeploy-runtime==1.1.0
# 2.2 支持 onnxruntime-gpu tensorrt 推理
pip install mmdeploy-runtime-gpu==1.0.0
pip install mmdeploy-runtime-gpu==1.1.0
# 3. 安装推理引擎
# 3.1 安装推理引擎 TensorRT
@ -223,10 +223,10 @@ result = inference_model(
你可以直接运行预编译包中的 demo 程序,输入 SDK Model 和图像,进行推理,并查看推理结果。
```shell
wget https://github.com/open-mmlab/mmdeploy/releases/download/v1.0.0/mmdeploy-1.0.0-linux-x86_64-cuda11.3.tar.gz
tar xf mmdeploy-1.0.0-linux-x86_64-cuda11.3
wget https://github.com/open-mmlab/mmdeploy/releases/download/v1.1.0/mmdeploy-1.1.0-linux-x86_64-cuda11.3.tar.gz
tar xf mmdeploy-1.1.0-linux-x86_64-cuda11.3
cd mmdeploy-1.0.0-linux-x86_64-cuda11.3
cd mmdeploy-1.1.0-linux-x86_64-cuda11.3
# 运行 python demo
python example/python/object_detection.py cuda ../mmdeploy_model/faster-rcnn ../mmdetection/demo/demo.jpg
# 运行 C/C++ demo

View File

@ -1,7 +1,7 @@
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Tuple
__version__ = '1.0.0'
__version__ = '1.1.0'
short_version = __version__

View File

@ -1,2 +1,2 @@
# Copyright (c) OpenMMLab. All rights reserved.
__version__ = '1.0.0'
__version__ = '1.1.0'