tell batch inference demos and single image inference demos apart (#986)
(cherry picked from commit 4c872a41c3
)
pull/1276/head
parent
97a9182a65
commit
f311cfd437
|
@ -30,7 +30,9 @@ function(add_example dep folder name)
|
|||
endfunction()
|
||||
|
||||
add_example(classifier c image_classification)
|
||||
add_example(classifier c batch_image_classification)
|
||||
add_example(detector c object_detection)
|
||||
add_example(detector c batch_object_detection)
|
||||
add_example(segmentor c image_segmentation)
|
||||
add_example(restorer c image_restorer)
|
||||
add_example(text_detector c ocr)
|
||||
|
|
|
@ -0,0 +1,100 @@
|
|||
#include <fstream>
|
||||
#include <opencv2/imgcodecs/imgcodecs.hpp>
|
||||
#include <string>
|
||||
|
||||
#include "mmdeploy/classifier.h"
|
||||
|
||||
static int batch_inference(mmdeploy_classifier_t classifier,
|
||||
const std::vector<int>& image_ids,
|
||||
const std::vector<mmdeploy_mat_t>& mats);
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 5) {
|
||||
fprintf(stderr, "usage:\n image_classification device_name dump_model_directory "
|
||||
"imagelist.txt batch_size\n");
|
||||
return 1;
|
||||
}
|
||||
auto device_name = argv[1];
|
||||
auto model_path = argv[2];
|
||||
|
||||
mmdeploy_classifier_t classifier{};
|
||||
int status{};
|
||||
status = mmdeploy_classifier_create_by_path(model_path, device_name, 0, &classifier);
|
||||
if (status != MMDEPLOY_SUCCESS) {
|
||||
fprintf(stderr, "failed to create classifier, code: %d\n", (int)status);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// `file_path` is the path of an image list file
|
||||
std::string file_path = argv[3];
|
||||
const int batch = std::stoi(argv[argc-1]);
|
||||
|
||||
// read image paths from the file
|
||||
std::ifstream ifs(file_path);
|
||||
std::string img_path;
|
||||
std::vector<std::string> img_paths;
|
||||
while (ifs >> img_path) {
|
||||
img_paths.emplace_back(std::move(img_path));
|
||||
}
|
||||
|
||||
// read images and process batch inference
|
||||
std::vector<cv::Mat> images;
|
||||
std::vector<int> image_ids;
|
||||
std::vector<mmdeploy_mat_t> mats;
|
||||
for (int i = 0; i < (int)img_paths.size(); ++i) {
|
||||
auto img = cv::imread(img_paths[i]);
|
||||
if (!img.data) {
|
||||
fprintf(stderr, "failed to load image: %s\n", img_paths[i].c_str());
|
||||
continue;
|
||||
}
|
||||
images.push_back(img);
|
||||
image_ids.push_back(i);
|
||||
mmdeploy_mat_t mat{
|
||||
img.data, img.rows, img.cols, 3, MMDEPLOY_PIXEL_FORMAT_BGR, MMDEPLOY_DATA_TYPE_UINT8};
|
||||
mats.push_back(mat);
|
||||
|
||||
// process batch inference
|
||||
if ((int)mats.size() == batch) {
|
||||
if (batch_inference(classifier, image_ids, mats) != 0) {
|
||||
continue;
|
||||
}
|
||||
// clear buffer for next batch
|
||||
mats.clear();
|
||||
image_ids.clear();
|
||||
images.clear();
|
||||
}
|
||||
}
|
||||
// process batch inference if there are still unhandled images
|
||||
if (!mats.empty()) {
|
||||
(void)batch_inference(classifier, image_ids, mats);
|
||||
}
|
||||
|
||||
mmdeploy_classifier_destroy(classifier);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
int batch_inference(mmdeploy_classifier_t classifier, const std::vector<int>& image_ids,
|
||||
const std::vector<mmdeploy_mat_t>& mats) {
|
||||
mmdeploy_classification_t* res{};
|
||||
int* res_count{};
|
||||
auto status = mmdeploy_classifier_apply(classifier, mats.data(), (int)mats.size(),
|
||||
&res, &res_count);
|
||||
if (status != MMDEPLOY_SUCCESS) {
|
||||
fprintf(stderr, "failed to apply classifier to batch images %d, code: %d\n",
|
||||
(int)mats.size(), (int)status);
|
||||
return 1;
|
||||
}
|
||||
// print the inference results
|
||||
auto res_ptr = res;
|
||||
for (int j = 0; j < (int)mats.size(); ++j) {
|
||||
fprintf(stderr, "results in the %d-th image:\n", image_ids[j]);
|
||||
for (int k = 0; k < res_count[j]; ++k, ++res_ptr) {
|
||||
fprintf(stderr, " label: %d, score: %.4f\n", res_ptr->label_id, res_ptr->score);
|
||||
}
|
||||
}
|
||||
// release results buffer
|
||||
mmdeploy_classifier_release_result(res, res_count, (int)mats.size());
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,147 @@
|
|||
#include <fstream>
|
||||
#include <opencv2/imgcodecs/imgcodecs.hpp>
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
#include <string>
|
||||
|
||||
#include "mmdeploy/detector.h"
|
||||
|
||||
static int batch_inference(mmdeploy_detector_t detector, std::vector<cv::Mat>& images,
|
||||
const std::vector<int>& image_ids,
|
||||
const std::vector<mmdeploy_mat_t>& mats);
|
||||
|
||||
static void visualize_detection(const std::string& output_name, cv::Mat& image,
|
||||
const mmdeploy_detection_t* bboxes_ptr, int bboxes_num);
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 5) {
|
||||
fprintf(stderr, "usage:\n object_detection device_name sdk_model_path "
|
||||
"file_path batch_size\n");
|
||||
return 1;
|
||||
}
|
||||
auto device_name = argv[1];
|
||||
auto model_path = argv[2];
|
||||
|
||||
mmdeploy_detector_t detector{};
|
||||
int status{};
|
||||
status = mmdeploy_detector_create_by_path(model_path, device_name, 0, &detector);
|
||||
if (status != MMDEPLOY_SUCCESS) {
|
||||
fprintf(stderr, "failed to create detector, code: %d\n", (int)status);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// file_path is the path of an image list file
|
||||
std::string file_path = argv[3];
|
||||
const int batch = std::stoi(argv[argc-1]);
|
||||
|
||||
// read image paths from the file
|
||||
std::ifstream ifs(file_path);
|
||||
std::string img_path;
|
||||
std::vector<std::string> img_paths;
|
||||
while (ifs >> img_path) {
|
||||
img_paths.emplace_back(std::move(img_path));
|
||||
}
|
||||
|
||||
|
||||
// read images and process batch inference
|
||||
std::vector<cv::Mat> images;
|
||||
std::vector<int> image_ids;
|
||||
std::vector<mmdeploy_mat_t> mats;
|
||||
for (int i = 0; i < (int)img_paths.size(); ++i) {
|
||||
auto img = cv::imread(img_paths[i]);
|
||||
if (!img.data) {
|
||||
fprintf(stderr, "failed to load image: %s\n", img_paths[i].c_str());
|
||||
continue;
|
||||
}
|
||||
images.push_back(img);
|
||||
image_ids.push_back(i);
|
||||
mmdeploy_mat_t mat{
|
||||
img.data, img.rows, img.cols, 3, MMDEPLOY_PIXEL_FORMAT_BGR, MMDEPLOY_DATA_TYPE_UINT8};
|
||||
mats.push_back(mat);
|
||||
|
||||
// process batch inference
|
||||
if ((int)mats.size() == batch) {
|
||||
if (batch_inference(detector, images, image_ids, mats) != 0) {
|
||||
continue;
|
||||
}
|
||||
// clear buffer for next batch
|
||||
mats.clear();
|
||||
image_ids.clear();
|
||||
images.clear();
|
||||
}
|
||||
}
|
||||
// process batch inference if there are still unhandled images
|
||||
if (!mats.empty()) {
|
||||
(void)batch_inference(detector, images, image_ids, mats);
|
||||
}
|
||||
|
||||
mmdeploy_detector_destroy(detector);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int batch_inference(mmdeploy_detector_t detector, std::vector<cv::Mat>& images,
|
||||
const std::vector<int>& image_ids,
|
||||
const std::vector<mmdeploy_mat_t>& mats) {
|
||||
mmdeploy_detection_t* bboxes{};
|
||||
int* res_count{};
|
||||
auto status = mmdeploy_detector_apply(detector, mats.data(), mats.size(), &bboxes, &res_count);
|
||||
if (status != MMDEPLOY_SUCCESS) {
|
||||
fprintf(stderr, "failed to apply detector, code: %d\n", (int)status);
|
||||
return 1;
|
||||
}
|
||||
|
||||
mmdeploy_detection_t* bboxes_ptr = bboxes;
|
||||
for (int i = 0; i < (int)mats.size(); ++i) {
|
||||
fprintf(stdout, "results in the %d-th image:\n bbox_count=%d\n", image_ids[i], res_count[i]);
|
||||
const std::string output_name = "output_detection_" + std::to_string(image_ids[i]) + ".png";
|
||||
visualize_detection(output_name, images[i], bboxes_ptr, res_count[i]);
|
||||
bboxes_ptr = bboxes_ptr + res_count[i];
|
||||
}
|
||||
|
||||
mmdeploy_detector_release_result(bboxes, res_count, mats.size());
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
void visualize_detection(const std::string& output_name, cv::Mat& image,
|
||||
const mmdeploy_detection_t* bboxes_ptr, int bbox_num) {
|
||||
for (int i = 0; i < bbox_num; ++i, ++bboxes_ptr) {
|
||||
const auto& box = bboxes_ptr->bbox;
|
||||
const auto& mask = bboxes_ptr->mask;
|
||||
|
||||
fprintf(stdout,
|
||||
" box %d, left=%.2f, top=%.2f, right=%.2f, bottom=%.2f, "
|
||||
"label=%d, score=%.4f\n",
|
||||
i, box.left, box.top, box.right, box.bottom, bboxes_ptr->label_id, bboxes_ptr->score);
|
||||
|
||||
// skip detections with invalid bbox size (bbox height or width < 1)
|
||||
if ((box.right - box.left) < 1 || (box.bottom - box.top) < 1) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// skip detections less than specified score threshold
|
||||
if (bboxes_ptr->score < 0.3) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// generate mask overlay if model exports masks
|
||||
if (mask != nullptr) {
|
||||
fprintf(stdout, "mask %d, height=%d, width=%d\n", i, mask->height, mask->width);
|
||||
|
||||
cv::Mat imgMask(mask->height, mask->width, CV_8UC1, &mask->data[0]);
|
||||
auto x0 = std::max(std::floor(box.left) - 1, 0.f);
|
||||
auto y0 = std::max(std::floor(box.top) - 1, 0.f);
|
||||
cv::Rect roi((int)x0, (int)y0, mask->width, mask->height);
|
||||
|
||||
// split the RGB channels, overlay mask to a specific color channel
|
||||
cv::Mat ch[3];
|
||||
split(image, ch);
|
||||
int col = 0;
|
||||
cv::bitwise_or(imgMask, ch[col](roi), ch[col](roi));
|
||||
merge(ch, 3, image);
|
||||
}
|
||||
|
||||
cv::rectangle(image, cv::Point{(int)box.left, (int)box.top},
|
||||
cv::Point{(int)box.right, (int)box.bottom}, cv::Scalar{0, 255, 0});
|
||||
}
|
||||
cv::imwrite(output_name, image);
|
||||
}
|
Loading…
Reference in New Issue