# Copyright (c) OpenMMLab. All rights reserved. exp_name = 'deepfillv1_256x256_8x2_places' model = dict( type='DeepFillv1Inpaintor', encdec=dict( type='DeepFillEncoderDecoder', stage1=dict( type='GLEncoderDecoder', encoder=dict(type='DeepFillEncoder', padding_mode='reflect'), decoder=dict( type='DeepFillDecoder', in_channels=128, padding_mode='reflect'), dilation_neck=dict( type='GLDilationNeck', in_channels=128, act_cfg=dict(type='ELU'), padding_mode='reflect')), stage2=dict( type='DeepFillRefiner', encoder_attention=dict( type='DeepFillEncoder', encoder_type='stage2_attention', padding_mode='reflect'), encoder_conv=dict( type='DeepFillEncoder', encoder_type='stage2_conv', padding_mode='reflect'), dilation_neck=dict( type='GLDilationNeck', in_channels=128, act_cfg=dict(type='ELU'), padding_mode='reflect'), contextual_attention=dict( type='ContextualAttentionNeck', in_channels=128, padding_mode='reflect'), decoder=dict( type='DeepFillDecoder', in_channels=256, padding_mode='reflect'))), disc=dict( type='DeepFillv1Discriminators', global_disc_cfg=dict( type='MultiLayerDiscriminator', in_channels=3, max_channels=256, fc_in_channels=65536, fc_out_channels=1, num_convs=4, norm_cfg=None, act_cfg=dict(type='ELU'), out_act_cfg=dict(type='LeakyReLU', negative_slope=0.2)), local_disc_cfg=dict( type='MultiLayerDiscriminator', in_channels=3, max_channels=512, fc_in_channels=32768, fc_out_channels=1, num_convs=4, norm_cfg=None, act_cfg=dict(type='ELU'), out_act_cfg=dict(type='LeakyReLU', negative_slope=0.2))), stage1_loss_type=('loss_l1_hole', 'loss_l1_valid'), stage2_loss_type=('loss_l1_hole', 'loss_l1_valid', 'loss_gan'), loss_gan=dict(type='GANLoss', gan_type='wgan', loss_weight=0.0001), loss_l1_hole=dict(type='L1Loss', loss_weight=1.0), loss_l1_valid=dict(type='L1Loss', loss_weight=1.0), loss_gp=dict(type='GradientPenaltyLoss', loss_weight=10.0), loss_disc_shift=dict(type='DiscShiftLoss', loss_weight=0.001), pretrained=None) test_cfg = dict(metrics=['l1', 'psnr', 'ssim']) test_pipeline = [ dict(type='LoadImageFromFile', key='gt_img'), dict( type='LoadMask', mask_mode='bbox', mask_config=dict( max_bbox_shape=(128, 128), max_bbox_delta=40, min_margin=20, img_shape=(256, 256))), dict(type='Crop', keys=['gt_img'], crop_size=(384, 384), random_crop=True), dict(type='Resize', keys=['gt_img'], scale=(256, 256), keep_ratio=False), dict( type='Normalize', keys=['gt_img'], mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], to_rgb=False), dict(type='GetMaskedImage'), dict( type='Collect', keys=['gt_img', 'masked_img', 'mask', 'mask_bbox'], meta_keys=['gt_img_path']), dict(type='ImageToTensor', keys=['gt_img', 'masked_img', 'mask']), dict(type='ToTensor', keys=['mask_bbox']) ] data = dict( test_dataloader=dict(samples_per_gpu=1), test=dict( type='ImgInpaintingDataset', ann_file='tests/test_codebase/test_mmedit/data/ann_file.txt', data_prefix='tests/test_codebase/test_mmedit/data', pipeline=test_pipeline, test_mode=True))