# Quantization test result Currently mmdeploy support ncnn quantization ## Quantize with ncnn ### mmcls | model | dataset | fp32 top-1 (%) | int8 top-1 (%) | | :--------------------------------------------------------------------------------------------------------------------------: | :---------: | :------------: | :------------: | | [ResNet-18](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet18_8xb16_cifar10.py) | Cifar10 | 94.82 | 94.83 | | [ResNeXt-32x4d-50](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext50-32x4d_8xb32_in1k.py) | ImageNet-1k | 77.90 | 78.20\* | | [MobileNet V2](https://github.com/open-mmlab/mmclassification/blob/master/configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py) | ImageNet-1k | 71.86 | 71.43\* | | [HRNet-W18\*](https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w18_4xb32_in1k.py) | ImageNet-1k | 76.75 | 76.25\* | Note: - Because of the large amount of imagenet-1k data and ncnn has not released Vulkan int8 version, only part of the test set (4000/50000) is used. - The accuracy will vary after quantization, and it is normal for the classification model to increase by less than 1%. ### OCR detection | model | dataset | fp32 hmean | int8 hmean | | :---------------------------------------------------------------------------------------------------------------: | :-------: | :--------: | :------------: | | [PANet](https://github.com/open-mmlab/mmocr/blob/main/configs/textdet/panet/panet_r18_fpem_ffm_600e_icdar2015.py) | ICDAR2015 | 0.795 | 0.792 @thr=0.9 | Note: [mmocr](https://github.com/open-mmlab/mmocr) Uses 'shapely' to compute IoU, which results in a slight difference in accuracy