# Copyright (c) OpenMMLab. All rights reserved. # model settings codec = dict( type='MSRAHeatmap', input_size=(192, 256), heatmap_size=(48, 64), sigma=2) test_cfg = dict( flip_test=False, flip_mode='heatmap', shift_heatmap=True, ) model = dict( type='TopdownPoseEstimator', data_preprocessor=dict( type='PoseDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True), backbone=dict(type='ResNet', depth=18), head=dict( type='HeatmapHead', in_channels=512, out_channels=17, deconv_out_channels=None, loss=dict(type='KeypointMSELoss', use_target_weight=True), decoder=codec), test_cfg=test_cfg) # dataset settings dataset_type = 'CocoDataset' data_mode = 'topdown' data_root = 'tests/test_codebase/test_mmpose/data/' file_client_args = dict(backend='disk') test_pipeline = [ dict(type='LoadImage', file_client_args=file_client_args), dict(type='GetBBoxCenterScale'), dict(type='TopdownAffine', input_size=codec['input_size']), dict(type='PackPoseInputs') ] val_dataloader = dict( batch_size=1, num_workers=1, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/person_keypoints_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, lazy_init=True, serialize_data=False, pipeline=test_pipeline, )) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/person_keypoints_val2017.json') test_evaluator = val_evaluator # default_runtime default_scope = 'mmpose' default_hooks = dict() vis_backends = [dict(type='LocalVisBackend')] visualizer = dict( type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')