#include "mmdeploy/classifier.hpp" #include "opencv2/imgcodecs/imgcodecs.hpp" #include "utils/argparse.h" #include "utils/visualize.h" DEFINE_ARG_string(model, "Model path"); DEFINE_ARG_string(image, "Input image path"); DEFINE_string(device, "cpu", R"(Device name, e.g. "cpu", "cuda")"); DEFINE_string(output, "classifier_output.jpg", "Output image path"); int main(int argc, char* argv[]) { if (!utils::ParseArguments(argc, argv)) { return -1; } cv::Mat img = cv::imread(ARGS_image); if (img.empty()) { fprintf(stderr, "failed to load image: %s\n", ARGS_image.c_str()); return -1; } // construct a classifier instance mmdeploy::Classifier classifier(mmdeploy::Model{ARGS_model}, mmdeploy::Device{FLAGS_device}); // apply the classifier; the result is an array-like class holding references to // `mmdeploy_classification_t`, will be released automatically on destruction mmdeploy::Classifier::Result result = classifier.Apply(img); // visualize results utils::Visualize v; auto sess = v.get_session(img); int count = 0; for (const mmdeploy_classification_t& cls : result) { sess.add_label(cls.label_id, cls.score, count++); } if (!FLAGS_output.empty()) { cv::imwrite(FLAGS_output, sess.get()); } return 0; }