# How to evaluate model After converting a PyTorch model to a backend model, you may evaluate backend models with `tools/test.py` ## Prerequisite Install MMDeploy according to [get-started](../get_started.md) instructions. And convert the PyTorch model or ONNX model to the backend model by following the [guide](convert_model.md). ## Usage ```shell python tools/test.py \ ${DEPLOY_CFG} \ ${MODEL_CFG} \ --model ${BACKEND_MODEL_FILES} \ [--out ${OUTPUT_PKL_FILE}] \ [--format-only] \ [--metrics ${METRICS}] \ [--show] \ [--show-dir ${OUTPUT_IMAGE_DIR}] \ [--show-score-thr ${SHOW_SCORE_THR}] \ --device ${DEVICE} \ [--cfg-options ${CFG_OPTIONS}] \ [--metric-options ${METRIC_OPTIONS}] [--log2file work_dirs/output.txt] [--batch-size ${BATCH_SIZE}] [--speed-test] \ [--warmup ${WARM_UP}] \ [--log-interval ${LOG_INTERVERL}] \ ``` ## Description of all arguments - `deploy_cfg`: The config for deployment. - `model_cfg`: The config of the model in OpenMMLab codebases. - `--model`: The backend model file. For example, if we convert a model to TensorRT, we need to pass the model file with ".engine" suffix. - `--out`: The path to save output results in pickle format. (The results will be saved only if this argument is given) - `--format-only`: Whether format the output results without evaluation or not. It is useful when you want to format the result to a specific format and submit it to the test server - `--metrics`: The metrics to evaluate the model defined in OpenMMLab codebases. e.g. "segm", "proposal" for COCO in mmdet, "precision", "recall", "f1_score", "support" for single label dataset in mmcls. - `--show`: Whether to show the evaluation result on the screen. - `--show-dir`: The directory to save the evaluation result. (The results will be saved only if this argument is given) - `--show-score-thr`: The threshold determining whether to show detection bounding boxes. - `--device`: The device that the model runs on. Note that some backends restrict the device. For example, TensorRT must run on cuda. - `--cfg-options`: Extra or overridden settings that will be merged into the current deploy config. - `--metric-options`: Custom options for evaluation. The key-value pair in xxx=yyy format will be kwargs for dataset.evaluate() function. - `--log2file`: log evaluation results (and speed) to file. - `--batch-size`: the batch size for inference, which would override `samples_per_gpu` in data config. Default is `1`. Note that not all models support `batch_size>1`. - `--speed-test`: Whether to activate speed test. - `--warmup`: warmup before counting inference elapse, require setting speed-test first. - `--log-interval`: The interval between each log, require setting speed-test first. - `--json-file`: The path of json file to save evaluation results. Default is `./results.json`. \* Other arguments in `tools/test.py` are used for speed test. They have no concern with evaluation. ## Example ```shell python tools/test.py \ configs/mmcls/classification_onnxruntime_static.py \ {MMCLS_DIR}/configs/resnet/resnet50_b32x8_imagenet.py \ --model model.onnx \ --out out.pkl \ --device cpu \ --speed-test ``` ## Note - The performance of each model in [OpenMMLab](https://openmmlab.com/) codebases can be found in the document of each codebase.