## OpenVINO Support This tutorial is based on Linux systems like Ubuntu-18.04. ### Installation 1. Install [OpenVINO](https://docs.openvinotoolkit.org/latest/installation_guides.html). 2. Install MMDeploy following the [instructions](../build.md). ### Usage Example: ```bash python tools/deploy.py \ configs/mmdet/single-stage/single-stage_openvino_dynamic.py \ /mmdetection_dir/mmdetection/configs/ssd/ssd300_coco.py \ /tmp/snapshots/ssd300_coco_20210803_015428-d231a06e.pth \ tests/data/tiger.jpeg \ --work-dir ../deploy_result \ --device cpu \ --log-level INFO \ ``` ### List of supported models exportable to OpenVINO from MMDetection The table below lists the models that are guaranteed to be exportable to OpenVINO from MMDetection. | Model name | Config | Dynamic Shape | | :----------------: | :-----------------------------------------------------------------------: | :-----------: | | ATSS | `configs/atss/atss_r50_fpn_1x_coco.py` | Y | | Cascade Mask R-CNN | `configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py` | Y | | Cascade R-CNN | `configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py` | Y | | Faster R-CNN | `configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py` | Y | | FCOS | `configs/fcos/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_4x2_2x_coco.py` | Y | | FoveaBox | `configs/foveabox/fovea_r50_fpn_4x4_1x_coco.py ` | Y | | FSAF | `configs/fsaf/fsaf_r50_fpn_1x_coco.py` | Y | | Mask R-CNN | `configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py` | Y | | RetinaNet | `configs/retinanet/retinanet_r50_fpn_1x_coco.py` | Y | | SSD | `configs/ssd/ssd300_coco.py` | Y | | YOLOv3 | `configs/yolo/yolov3_d53_mstrain-608_273e_coco.py` | Y | | YOLOX | `configs/yolox/yolox_tiny_8x8_300e_coco.py` | Y | | Faster R-CNN + DCN | `configs/dcn/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py` | Y | | VFNet | `configs/vfnet/vfnet_r50_fpn_1x_coco.py` | Y | Notes: - For faster work in OpenVINO in the Faster-RCNN, Mask-RCNN, Cascade-RCNN, Cascade-Mask-RCNN models the RoiAlign operation is replaced with the [ExperimentalDetectronROIFeatureExtractor](https://docs.openvinotoolkit.org/latest/openvino_docs_ops_detection_ExperimentalDetectronROIFeatureExtractor_6.html) operation in the ONNX graph. - Models "VFNet" and "Faster R-CNN + DCN" use the custom "DeformableConv2D" operation.