import importlib import os import tempfile import mmcv import numpy as np import pytest import torch import mmdeploy.apis.onnxruntime as ort_apis import mmdeploy.apis.ppl as ppl_apis import mmdeploy.apis.tensorrt as trt_apis import mmdeploy.apis.test as api_test import mmdeploy.apis.utils as api_utils from mmdeploy.utils.constants import Backend, Codebase from mmdeploy.utils.test import SwitchBackendWrapper @pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda') @pytest.mark.skipif( not importlib.util.find_spec('tensorrt'), reason='requires tensorrt') def test_TensorRTRestorer(): # force add backend wrapper regardless of plugins from mmdeploy.apis.tensorrt.tensorrt_utils import TRTWrapper trt_apis.__dict__.update({'TRTWrapper': TRTWrapper}) # simplify backend inference outputs = { 'output': torch.rand(1, 3, 64, 64).cuda(), } with SwitchBackendWrapper(TRTWrapper) as wrapper: wrapper.set(outputs=outputs) from mmdeploy.mmedit.apis.inference import TensorRTRestorer trt_restorer = TensorRTRestorer('', 0) imgs = torch.rand(1, 3, 64, 64).cuda() results = trt_restorer.forward(imgs) assert results is not None, ('failed to get output using ' 'TensorRTRestorer') results = trt_restorer.forward(imgs, test_mode=True) assert results is not None, ('failed to get output using ' 'TensorRTRestorer') @pytest.mark.skipif( not importlib.util.find_spec('onnxruntime'), reason='requires onnxruntime') def test_ONNXRuntimeRestorer(): # force add backend wrapper regardless of plugins from mmdeploy.apis.onnxruntime.onnxruntime_utils import ORTWrapper ort_apis.__dict__.update({'ORTWrapper': ORTWrapper}) # simplify backend inference outputs = torch.rand(1, 3, 64, 64) with SwitchBackendWrapper(ORTWrapper) as wrapper: wrapper.set(outputs=outputs) from mmdeploy.mmedit.apis.inference import ONNXRuntimeRestorer ort_restorer = ONNXRuntimeRestorer('', 0) imgs = torch.rand(1, 3, 64, 64) results = ort_restorer.forward(imgs) assert results is not None, 'failed to get output using '\ 'ONNXRuntimeRestorer' results = ort_restorer.forward(imgs, test_mode=True) assert results is not None, 'failed to get output using '\ 'ONNXRuntimeRestorer' @pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda') @pytest.mark.skipif( not importlib.util.find_spec('pyppl'), reason='requires pyppl') def test_PPLRestorer(): # force add backend wrapper regardless of plugins from mmdeploy.apis.ppl.ppl_utils import PPLWrapper ppl_apis.__dict__.update({'PPLWrapper': PPLWrapper}) # simplify backend inference outputs = torch.rand(1, 3, 64, 64) with SwitchBackendWrapper(PPLWrapper) as wrapper: wrapper.set(outputs=outputs) from mmdeploy.mmedit.apis.inference import PPLRestorer ppl_restorer = PPLRestorer('', 0) imgs = torch.rand(1, 3, 64, 64) results = ppl_restorer.forward(imgs) assert results is not None, 'failed to get output using PPLRestorer' results = ppl_restorer.forward(imgs, test_mode=True) assert results is not None, 'failed to get output using PPLRestorer' model_cfg = 'tests/test_mmedit/data/model.py' deploy_cfg = mmcv.Config( dict( backend_config=dict(type='onnxruntime'), codebase_config=dict(type='mmedit', task='SuperResolution'), onnx_config=dict( type='onnx', export_params=True, keep_initializers_as_inputs=False, opset_version=11, input_shape=None, input_names=['input'], output_names=['output']))) input_img = torch.rand(1, 3, 64, 64) input = {'lq': input_img} def test_init_pytorch_model(): model = api_utils.init_pytorch_model( Codebase.MMEDIT, model_cfg=model_cfg, device='cpu') assert model is not None def create_backend_model(): if not importlib.util.find_spec('onnxruntime'): pytest.skip('requires onnxruntime') from mmdeploy.apis.onnxruntime.onnxruntime_utils import ORTWrapper ort_apis.__dict__.update({'ORTWrapper': ORTWrapper}) # simplify backend inference wrapper = SwitchBackendWrapper(ORTWrapper) wrapper.set(model_cfg=model_cfg, deploy_cfg=deploy_cfg) model = api_utils.init_backend_model([''], model_cfg, deploy_cfg) return model, wrapper @pytest.mark.skipif( not importlib.util.find_spec('onnxruntime'), reason='requires onnxruntime') def test_init_backend_model(): model, wrapper = create_backend_model() assert model is not None # Recovery wrapper.recover() @pytest.mark.skipif( not importlib.util.find_spec('onnxruntime'), reason='requires onnxruntime') def test_run_inference(): model, wrapper = create_backend_model() result = api_utils.run_inference(Codebase.MMEDIT, input, model) assert isinstance(result, np.ndarray) # Recovery wrapper.recover() @pytest.mark.skipif( not importlib.util.find_spec('onnxruntime'), reason='requires onnxruntime') def test_visualize(): model, wrapper = create_backend_model() result = api_utils.run_inference(Codebase.MMEDIT, input, model) with tempfile.TemporaryDirectory() as dir: filename = dir + 'tmp.jpg' api_utils.visualize(Codebase.MMEDIT, input, result, model, filename, Backend.ONNXRUNTIME) assert os.path.exists(filename) # Recovery wrapper.recover() @pytest.mark.skipif( not importlib.util.find_spec('onnxruntime'), reason='requires onnxruntime') def test_inference_model(): numpy_img = np.random.rand(64, 64, 3) with tempfile.TemporaryDirectory() as dir: filename = dir + 'tmp.jpg' model, wrapper = create_backend_model() from mmdeploy.apis.inference import inference_model inference_model(model_cfg, deploy_cfg, model, numpy_img, 'cpu', Backend.ONNXRUNTIME, filename, False) assert os.path.exists(filename) # Recovery wrapper.recover() @pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda') def test_test(): from mmcv.parallel import MMDataParallel with tempfile.TemporaryDirectory() as dir: # Export a complete model numpy_img = np.random.rand(50, 50, 3) onnx_filename = 'end2end.onnx' onnx_path = os.path.join(dir, onnx_filename) from mmdeploy.apis import torch2onnx torch2onnx(numpy_img, dir, onnx_filename, deploy_cfg, model_cfg) assert os.path.exists(onnx_path) # Prepare dataloader dataset = api_utils.build_dataset( Codebase.MMEDIT, model_cfg, dataset_type='test') assert dataset is not None, 'Failed to build dataset' dataloader = api_utils.build_dataloader(Codebase.MMEDIT, dataset, 1, 1) assert dataloader is not None, 'Failed to build dataloader' # Prepare model model = api_utils.init_backend_model([onnx_path], model_cfg, deploy_cfg) model = MMDataParallel(model, device_ids=[0]) assert model is not None # Run test outputs = api_test.single_gpu_test(Codebase.MMEDIT, model, dataloader) assert outputs is not None api_test.post_process_outputs(outputs, dataset, model_cfg, Codebase.MMEDIT)