import tempfile import onnx import pytest import torch from mmdeploy.core import RewriterContext from mmdeploy.utils.test import WrapFunction @pytest.mark.parametrize( 'iou_threshold, score_threshold,max_output_boxes_per_class', [(0.6, 0.2, 3)]) def test_ONNXNMSop(iou_threshold, score_threshold, max_output_boxes_per_class): boxes = torch.tensor([[[291.1746, 316.2263, 343.5029, 347.7312], [288.4846, 315.0447, 343.7267, 346.5630], [288.5307, 318.1989, 341.6425, 349.7222], [918.9102, 83.7463, 933.3920, 164.9041], [895.5786, 78.2361, 907.8049, 172.0883], [292.5816, 316.5563, 340.3462, 352.9989], [609.4592, 83.5447, 631.2532, 144.0749], [917.7308, 85.5870, 933.2839, 168.4530], [895.5138, 79.3596, 908.2865, 171.0418], [291.4747, 318.6987, 347.1208, 349.5754]]]) scores = torch.rand(1, 5, 10) from mmdeploy.mmcv.ops import ONNXNMSop def wrapped_function(torch_bboxes, torch_scores): return ONNXNMSop.apply(torch_bboxes, torch_scores, max_output_boxes_per_class, iou_threshold, score_threshold) wrapped_model = WrapFunction(wrapped_function).eval() result = wrapped_model(boxes, scores) assert result is not None onnx_file_path = tempfile.NamedTemporaryFile().name with RewriterContext({}, opset=11), torch.no_grad(): torch.onnx.export( wrapped_model, (boxes, scores), onnx_file_path, export_params=True, keep_initializers_as_inputs=True, input_names=['boxes', 'scores'], output_names=['result'], opset_version=11) model = onnx.load(onnx_file_path) assert model.graph.node[3].op_type == 'NonMaxSuppression'