# MMEditing Deployment - [Installation](#installation) - [Install mmedit](#install-mmedit) - [Install mmdeploy](#install-mmdeploy) - [Convert model](#convert-model) - [Convert super resolution model](#convert-super-resolution-model) - [Model specification](#model-specification) - [Model inference](#model-inference) - [Backend model inference](#backend-model-inference) - [SDK model inference](#sdk-model-inference) - [Supported models](#supported-models) ______________________________________________________________________ [MMEditing](https://github.com/open-mmlab/mmediting/tree/1.x) aka `mmedit` is an open-source image and video editing toolbox based on PyTorch. It is a part of the [OpenMMLab](https://openmmlab.com/) project. ## Installation ### Install mmedit Please follow the [installation guide](https://github.com/open-mmlab/mmediting/tree/1.x#installation) to install mmedit. ### Install mmdeploy There are several methods to install mmdeploy, among which you can choose an appropriate one according to your target platform and device. **Method I:** Install precompiled package > **TODO**. MMDeploy hasn't released based on 1.x branch. **Method II:** Build using scripts If your target platform is **Ubuntu 18.04 or later version**, we encourage you to run [scripts](../01-how-to-build/build_from_script.md). For example, the following commands install mmdeploy as well as inference engine - `ONNX Runtime`. ```shell git clone --recursive -b 1.x https://github.com/open-mmlab/mmdeploy.git cd mmdeploy python3 tools/scripts/build_ubuntu_x64_ort.py $(nproc) export PYTHONPATH=$(pwd)/build/lib:$PYTHONPATH export LD_LIBRARY_PATH=$(pwd)/../mmdeploy-dep/onnxruntime-linux-x64-1.8.1/lib/:$LD_LIBRARY_PATH ``` **Method III:** Build from source If neither **I** nor **II** meets your requirements, [building mmdeploy from source](../01-how-to-build/build_from_source.md) is the last option. ## Convert model You can use [tools/deploy.py](https://github.com/open-mmlab/mmdeploy/tree/1.x/tools/deploy.py) to convert mmedit models to the specified backend models. Its detailed usage can be learned from [here](https://github.com/open-mmlab/mmdeploy/tree/1.x/docs/en/02-how-to-run/convert_model.md#usage). When using `tools/deploy.py`, it is crucial to specify the correct deployment config. We've already provided builtin deployment config [files](https://github.com/open-mmlab/mmdeploy/tree/1.x/configs/mmedit) of all supported backends for mmedit, under which the config file path follows the pattern: ``` {task}/{task}_{backend}-{precision}_{static | dynamic}_{shape}.py ``` - **{task}:** task in mmedit. MMDeploy supports models of one task in mmedit, i.e., `super resolution`. Please refer to chapter [supported models](#supported-models) for task-model organization. **DO REMEMBER TO USE** the corresponding deployment config file when trying to convert models of different tasks. - **{backend}:** inference backend, such as onnxruntime, tensorrt, pplnn, ncnn, openvino, coreml etc. - **{precision}:** fp16, int8. When it's empty, it means fp32 - **{static | dynamic}:** static shape or dynamic shape - **{shape}:** input shape or shape range of a model ### Convert super resolution model The command below shows an example about converting `ESRGAN` model to onnx model that can be inferred by ONNX Runtime. ```shell cd mmdeploy # download esrgan model from mmedit model zoo mim download mmedit --config esrgan_psnr-x4c64b23g32_1xb16-1000k_div2k --dest . # convert esrgan model to onnxruntime model with dynamic shape python tools/deploy.py \ configs/mmedit/super-resolution/super-resolution_onnxruntime_dynamic.py \ esrgan_psnr-x4c64b23g32_1xb16-1000k_div2k.py \ esrgan_psnr_x4c64b23g32_1x16_1000k_div2k_20200420-bf5c993c.pth \ demo/resources/face.png \ --work-dir mmdeploy_models/mmedit/ort \ --device cpu \ --show \ --dump-info ``` You can also convert the above model to other backend models by changing the deployment config file `*_onnxruntime_dynamic.py` to [others](https://github.com/open-mmlab/mmdeploy/tree/1.x/configs/mmedit), e.g., converting to tensorrt model by `super-resolution/super-resolution_tensorrt-_dynamic-32x32-512x512.py`. ```{tip} When converting mmedit models to tensorrt models, --device should be set to "cuda" ``` ## Model specification Before moving on to model inference chapter, let's know more about the converted model structure which is very important for model inference. The converted model locates in the working directory like `mmdeploy_models/mmedit/ort` in the previous example. It includes: ``` mmdeploy_models/mmedit/ort ├── deploy.json ├── detail.json ├── end2end.onnx └── pipeline.json ``` in which, - **end2end.onnx**: backend model which can be inferred by ONNX Runtime - \***.json**: the necessary information for mmdeploy SDK The whole package **mmdeploy_models/mmedit/ort** is defined as **mmdeploy SDK model**, i.e., **mmdeploy SDK model** includes both backend model and inference meta information. ## Model inference ### Backend model inference Take the previous converted `end2end.onnx` model as an example, you can use the following code to inference the model and visualize the results. ```python from mmdeploy.apis.utils import build_task_processor from mmdeploy.utils import get_input_shape, load_config import torch deploy_cfg = 'configs/mmedit/super-resolution/super-resolution_onnxruntime_dynamic.py' model_cfg = 'esrgan_psnr-x4c64b23g32_1xb16-1000k_div2k.py' device = 'cpu' backend_model = ['./mmdeploy_models/mmedit/ort/end2end.onnx'] image = './demo/resources/face.png' # read deploy_cfg and model_cfg deploy_cfg, model_cfg = load_config(deploy_cfg, model_cfg) # build task and backend model task_processor = build_task_processor(model_cfg, deploy_cfg, device) model = task_processor.build_backend_model(backend_model) # process input image input_shape = get_input_shape(deploy_cfg) model_inputs, _ = task_processor.create_input(image, input_shape) # do model inference with torch.no_grad(): result = model.test_step(model_inputs) # visualize results task_processor.visualize( image=image, model=model, result=result[0], window_name='visualize', output_file='output_restorer.bmp') ``` ### SDK model inference You can also perform SDK model inference like following, ```python from mmdeploy_python import Restorer import cv2 img = cv2.imread('./demo/resources/face.png') # create a classifier restorer = Restorer(model_path='./mmdeploy_models/mmedit/ort', device_name='cpu', device_id=0) # perform inference result = restorer(img) # visualize inference result # convert to BGR result = result[..., ::-1] cv2.imwrite('output_restorer.bmp', result) ``` Besides python API, mmdeploy SDK also provides other FFI (Foreign Function Interface), such as C, C++, C#, Java and so on. You can learn their usage from [demos](https://github.com/open-mmlab/mmdeploy/tree/1.x/demo). ## Supported models | Model | Task | ONNX Runtime | TensorRT | ncnn | PPLNN | OpenVINO | | :---------------------------------------------------------------------------------- | :--------------- | :----------: | :------: | :--: | :---: | :------: | | [SRCNN](https://github.com/open-mmlab/mmediting/tree/1.x/configs/srcnn) | super-resolution | Y | Y | Y | Y | Y | | [ESRGAN](https://github.com/open-mmlab/mmediting/tree/1.x/configs/esrgan) | super-resolution | Y | Y | Y | Y | Y | | [ESRGAN-PSNR](https://github.com/open-mmlab/mmediting/tree/1.x/configs/esrgan) | super-resolution | Y | Y | Y | Y | Y | | [SRGAN](https://github.com/open-mmlab/mmediting/tree/1.x/configs/srgan_resnet) | super-resolution | Y | Y | Y | Y | Y | | [SRResNet](https://github.com/open-mmlab/mmediting/tree/1.x/configs/srgan_resnet) | super-resolution | Y | Y | Y | Y | Y | | [Real-ESRGAN](https://github.com/open-mmlab/mmediting/tree/1.x/configs/real_esrgan) | super-resolution | Y | Y | Y | Y | Y | | [EDSR](https://github.com/open-mmlab/mmediting/tree/1.x/configs/edsr) | super-resolution | Y | Y | Y | N | Y | | [RDN](https://github.com/open-mmlab/mmediting/tree/1.x/configs/rdn) | super-resolution | Y | Y | Y | Y | Y |