# onnxruntime 支持情况 ## Introduction of ONNX Runtime **ONNX Runtime** is a cross-platform inference and training accelerator compatible with many popular ML/DNN frameworks. Check its [github](https://github.com/microsoft/onnxruntime) for more information. ## Installation *Please note that only **onnxruntime>=1.8.1** of CPU version on Linux platform is supported by now.* - Install ONNX Runtime python package ```bash pip install onnxruntime==1.8.1 ``` ## Build custom ops ### Prerequisite - Download `onnxruntime-linux` from ONNX Runtime [releases](https://github.com/microsoft/onnxruntime/releases/tag/v1.8.1), extract it, expose `ONNXRUNTIME_DIR` and finally add the lib path to `LD_LIBRARY_PATH` as below: ```bash wget https://github.com/microsoft/onnxruntime/releases/download/v1.8.1/onnxruntime-linux-x64-1.8.1.tgz tar -zxvf onnxruntime-linux-x64-1.8.1.tgz cd onnxruntime-linux-x64-1.8.1 export ONNXRUNTIME_DIR=$(pwd) export LD_LIBRARY_PATH=$ONNXRUNTIME_DIR/lib:$LD_LIBRARY_PATH ``` ### Build on Linux ```bash cd ${MMDEPLOY_DIR} # To MMDeploy root directory mkdir -p build && cd build cmake -DMMDEPLOY_TARGET_BACKENDS=ort -DONNXRUNTIME_DIR=${ONNXRUNTIME_DIR} .. make -j$(nproc) && make install ``` ## How to convert a model - You could follow the instructions of tutorial [How to convert model](../02-how-to-run/convert_model.md) ## How to add a new custom op ## Reminder - The custom operator is not included in [supported operator list](https://github.com/microsoft/onnxruntime/blob/master/docs/OperatorKernels.md) in ONNX Runtime. - The custom operator should be able to be exported to ONNX. #### Main procedures Take custom operator `roi_align` for example. 1. Create a `roi_align` directory in ONNX Runtime source directory `${MMDEPLOY_DIR}/csrc/backend_ops/onnxruntime/` 2. Add header and source file into `roi_align` directory `${MMDEPLOY_DIR}/csrc/backend_ops/onnxruntime/roi_align/` 3. Add unit test into `tests/test_ops/test_ops.py` Check [here](../../../tests/test_ops/test_ops.py) for examples. **Finally, welcome to send us PR of adding custom operators for ONNX Runtime in MMDeploy.** :nerd_face: ## References - [How to export Pytorch model with custom op to ONNX and run it in ONNX Runtime](https://github.com/onnx/tutorials/blob/master/PyTorchCustomOperator/README.md) - [How to add a custom operator/kernel in ONNX Runtime](https://onnxruntime.ai/docs/reference/operators/add-custom-op.html)