# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp from tempfile import NamedTemporaryFile import mmcv import numpy as np import pytest import torch import mmdeploy.backend.onnxruntime as ort_apis from mmdeploy.codebase import import_codebase from mmdeploy.utils import Backend, Codebase from mmdeploy.utils.test import SwitchBackendWrapper, backend_checker import_codebase(Codebase.MMSEG) NUM_CLASS = 19 IMAGE_SIZE = 32 @backend_checker(Backend.ONNXRUNTIME) class TestEnd2EndModel: @classmethod def setup_class(cls): # force add backend wrapper regardless of plugins from mmdeploy.backend.onnxruntime import ORTWrapper ort_apis.__dict__.update({'ORTWrapper': ORTWrapper}) # simplify backend inference cls.wrapper = SwitchBackendWrapper(ORTWrapper) cls.outputs = { 'outputs': torch.rand(1, 1, IMAGE_SIZE, IMAGE_SIZE), } cls.wrapper.set(outputs=cls.outputs) deploy_cfg = mmcv.Config( {'onnx_config': { 'output_names': ['outputs'] }}) from mmdeploy.codebase.mmseg.deploy.segmentation_model \ import End2EndModel class_names = ['' for i in range(NUM_CLASS)] palette = np.random.randint(0, 255, size=(NUM_CLASS, 3)) cls.end2end_model = End2EndModel( Backend.ONNXRUNTIME, [''], device='cpu', class_names=class_names, palette=palette, deploy_cfg=deploy_cfg) @classmethod def teardown_class(cls): cls.wrapper.recover() @pytest.mark.parametrize( 'ori_shape', [[IMAGE_SIZE, IMAGE_SIZE, 3], [2 * IMAGE_SIZE, 2 * IMAGE_SIZE, 3]]) def test_forward(self, ori_shape): imgs = [torch.rand(1, 3, IMAGE_SIZE, IMAGE_SIZE)] img_metas = [[{ 'ori_shape': ori_shape, 'img_shape': [IMAGE_SIZE, IMAGE_SIZE, 3], 'scale_factor': [1., 1., 1., 1.], }]] results = self.end2end_model.forward(imgs, img_metas) assert results is not None, 'failed to get output using '\ 'End2EndModel' def test_forward_test(self): imgs = torch.rand(2, 3, IMAGE_SIZE, IMAGE_SIZE) results = self.end2end_model.forward_test(imgs) assert isinstance(results[0], np.ndarray) def test_show_result(self): input_img = np.zeros([IMAGE_SIZE, IMAGE_SIZE, 3]) img_path = NamedTemporaryFile(suffix='.jpg').name result = [torch.rand(IMAGE_SIZE, IMAGE_SIZE)] self.end2end_model.show_result( input_img, result, '', show=False, out_file=img_path) assert osp.exists(img_path), 'Fails to create drawn image.' @pytest.mark.parametrize('from_file', [True, False]) @pytest.mark.parametrize('data_type', ['train', 'val', 'test']) def test_get_classes_palette_from_config(from_file, data_type): from mmseg.datasets import DATASETS from mmdeploy.codebase.mmseg.deploy.segmentation_model \ import get_classes_palette_from_config dataset_type = 'CityscapesDataset' data_cfg = mmcv.Config({ 'data': { data_type: dict( type=dataset_type, data_root='', img_dir='', ann_dir='', pipeline=None) } }) if from_file: config_path = NamedTemporaryFile(suffix='.py').name with open(config_path, 'w') as file: file.write(data_cfg.pretty_text) data_cfg = config_path classes, palette = get_classes_palette_from_config(data_cfg) module = DATASETS.module_dict[dataset_type] assert classes == module.CLASSES, \ f'fail to get CLASSES of dataset: {dataset_type}' assert palette == module.PALETTE, \ f'fail to get PALETTE of dataset: {dataset_type}' @backend_checker(Backend.ONNXRUNTIME) def test_build_segmentation_model(): model_cfg = mmcv.Config( dict(data=dict(test={'type': 'CityscapesDataset'}))) deploy_cfg = mmcv.Config( dict( backend_config=dict(type='onnxruntime'), onnx_config=dict(output_names=['outputs']), codebase_config=dict(type='mmseg'))) from mmdeploy.backend.onnxruntime import ORTWrapper ort_apis.__dict__.update({'ORTWrapper': ORTWrapper}) # simplify backend inference with SwitchBackendWrapper(ORTWrapper) as wrapper: wrapper.set(model_cfg=model_cfg, deploy_cfg=deploy_cfg) from mmdeploy.codebase.mmseg.deploy.segmentation_model import \ build_segmentation_model, End2EndModel segmentor = build_segmentation_model([''], model_cfg, deploy_cfg, 'cpu') assert isinstance(segmentor, End2EndModel)