// Copyright (c) OpenMMLab. All rights reserved. #include "catch.hpp" #include "core/tensor.h" #include "core/utils/device_utils.h" #include "preprocess/cpu/opencv_utils.h" #include "preprocess/transform/transform.h" #include "test_resource.h" #include "test_utils.h" using namespace mmdeploy; using namespace mmdeploy::test; using namespace std; void TestImage2Tensor(const Value& cfg, const cv::Mat& mat) { auto gResource = MMDeployTestResources::Get(); for (auto const& device_name : gResource.device_names()) { Device device{device_name.c_str()}; Stream stream{device}; auto transform = CreateTransform(cfg, device, stream); REQUIRE(transform != nullptr); vector channel_mats(mat.channels()); for (auto i = 0; i < mat.channels(); ++i) { cv::extractChannel(mat, channel_mats[i], i); } auto res = transform->Process({{"img", cpu::CVMat2Tensor(mat)}}); REQUIRE(!res.has_error()); auto res_tensor = res.value()["img"].get(); REQUIRE(res_tensor.device() == device); auto shape = res_tensor.desc().shape; REQUIRE(shape == std::vector{1, mat.channels(), mat.rows, mat.cols}); const Device kHost{"cpu"}; auto host_tensor = MakeAvailableOnDevice(res_tensor, kHost, stream); REQUIRE(stream.Wait()); // mat's shape is {h, w, c}, while res_tensor's shape is {1, c, h, w} // compare each channel between `res_tensor` and `mat` auto step = shape[2] * shape[3] * mat.elemSize1(); auto data = host_tensor.value().data(); for (auto i = 0; i < mat.channels(); ++i) { cv::Mat _mat{mat.rows, mat.cols, CV_MAKETYPE(mat.depth(), 1), data}; REQUIRE(::mmdeploy::cpu::Compare(channel_mats[i], _mat)); data += step; } } } TEST_CASE("transform ImageToTensor", "[img2tensor]") { auto gResource = MMDeployTestResources::Get(); auto img_list = gResource.LocateImageResources("transform"); REQUIRE(!img_list.empty()); auto img_path = img_list.front(); cv::Mat bgr_mat = cv::imread(img_path, cv::IMREAD_COLOR); cv::Mat gray_mat = cv::imread(img_path, cv::IMREAD_GRAYSCALE); cv::Mat bgr_float_mat; cv::Mat gray_float_mat; bgr_mat.convertTo(bgr_float_mat, CV_32FC3); gray_mat.convertTo(gray_float_mat, CV_32FC1); Value cfg{{"type", "ImageToTensor"}, {"keys", {"img"}}}; vector mats{bgr_mat, gray_mat, bgr_float_mat, gray_float_mat}; for (auto& mat : mats) { TestImage2Tensor(cfg, mat); } }