Apart from `deploy.py`, there are other useful tools under the `tools/` directory. ## torch2onnx This tool can be used to convert PyTorch model from OpenMMLab to ONNX. ### Usage ```bash python tools/torch2onnx.py \ ${DEPLOY_CFG} \ ${MODEL_CFG} \ ${CHECKPOINT} \ ${INPUT_IMG} \ ${OUTPUT} \ --device cpu \ --log-level INFO ``` ### Description of all arguments - `deploy_cfg` : The path of the deploy config file in MMDeploy codebase. - `model_cfg` : The path of model config file in OpenMMLab codebase. - `checkpoint` : The path of the model checkpoint file. - `img` : The path of the image file used to convert the model. - `output` : The path of the output ONNX model. - `--device` : The device used for conversion. If not specified, it will be set to `cpu`. - `--log-level` : To set log level which in `'CRITICAL', 'FATAL', 'ERROR', 'WARN', 'WARNING', 'INFO', 'DEBUG', 'NOTSET'`. If not specified, it will be set to `INFO`. ## extract ONNX model with `Mark` nodes in it can be partitioned into multiple subgraphs. This tool can be used to extract the subgraph from the ONNX model. ### Usage ```bash python tools/extract.py \ ${INPUT_MODEL} \ ${OUTPUT_MODEL} \ --start ${PARITION_START} \ --end ${PARITION_END} \ --log-level INFO ``` ### Description of all arguments - `input_model` : The path of input ONNX model. The output ONNX model will be extracted from this model. - `output_model` : The path of output ONNX model. - `--start` : The start point of extracted model with format `:`. The `function_name` comes from the decorator `@mark`. - `--end` : The end point of extracted model with format `:`. The `function_name` comes from the decorator `@mark`. - `--log-level` : To set log level which in `'CRITICAL', 'FATAL', 'ERROR', 'WARN', 'WARNING', 'INFO', 'DEBUG', 'NOTSET'`. If not specified, it will be set to `INFO`. ### Note To support the model partition, you need to add Mark nodes in the ONNX model. The Mark node comes from the `@mark` decorator. For example, if we have marked the `multiclass_nms` as below, we can set `end=multiclass_nms:input` to extract the subgraph before NMS. ```python @mark('multiclass_nms', inputs=['boxes', 'scores'], outputs=['dets', 'labels']) def multiclass_nms(*args, **kwargs): """Wrapper function for `_multiclass_nms`.""" ``` ## onnx2pplnn This tool helps to convert an `ONNX` model to an `PPLNN` model. ### Usage ```bash python tools/onnx2pplnn.py \ ${ONNX_PATH} \ ${OUTPUT_PATH} \ --device cuda:0 \ --opt-shapes [224,224] \ --log-level INFO ``` ### Description of all arguments - `onnx_path`: The path of the `ONNX` model to convert. - `output_path`: The converted `PPLNN` algorithm path in json format. - `device`: The device of the model during conversion. - `opt-shapes`: Optimal shapes for PPLNN optimization. The shape of each tensor should be wrap with "[]" or "()" and the shapes of tensors should be separated by ",". - `--log-level`: To set log level which in `'CRITICAL', 'FATAL', 'ERROR', 'WARN', 'WARNING', 'INFO', 'DEBUG', 'NOTSET'`. If not specified, it will be set to `INFO`. ## onnx2tensorrt This tool can be used to convert ONNX to TensorRT engine. ### Usage ```bash python tools/onnx2tensorrt.py \ ${DEPLOY_CFG} \ ${ONNX_PATH} \ ${OUTPUT} \ --device-id 0 \ --log-level INFO ``` ### Description of all arguments - `deploy_cfg` : The path of the deploy config file in MMDeploy codebase. - `onnx_path` : The ONNX model path to convert. - `output` : The path of output TensorRT engine. - `--device-id` : The device index, default to `0`. - `--calib-file` : The calibration data used to calibrate engine to int8. - `--log-level` : To set log level which in `'CRITICAL', 'FATAL', 'ERROR', 'WARN', 'WARNING', 'INFO', 'DEBUG', 'NOTSET'`. If not specified, it will be set to `INFO`. ## onnx2ncnn This tool helps to convert an `ONNX` model to an `ncnn` model. ### Usage ```bash python tools/onnx2ncnn.py \ ${ONNX_PATH} \ ${NCNN_PARAM} \ ${NCNN_BIN} \ --log-level INFO ``` ### Description of all arguments - `onnx_path` : The path of the `ONNX` model to convert from. - `output_param` : The converted `ncnn` param path. - `output_bin` : The converted `ncnn` bin path. - `--log-level` : To set log level which in `'CRITICAL', 'FATAL', 'ERROR', 'WARN', 'WARNING', 'INFO', 'DEBUG', 'NOTSET'`. If not specified, it will be set to `INFO`.