#include "mmdeploy/detector.hpp" #include "opencv2/imgcodecs/imgcodecs.hpp" #include "utils/argparse.h" #include "utils/visualize.h" DEFINE_ARG_string(model, "Model path"); DEFINE_ARG_string(image, "Input image path"); DEFINE_string(device, "cpu", R"(Device name, e.g. "cpu", "cuda")"); DEFINE_string(output, "detector_output.jpg", "Output image path"); DEFINE_double(det_thr, .5, "Detection score threshold"); int main(int argc, char* argv[]) { if (!utils::ParseArguments(argc, argv)) { return -1; } cv::Mat img = cv::imread(ARGS_image); if (img.empty()) { fprintf(stderr, "failed to load image: %s\n", ARGS_image.c_str()); return -1; } // construct a detector instance mmdeploy::Detector detector(mmdeploy::Model{ARGS_model}, mmdeploy::Device{FLAGS_device}); // apply the detector, the result is an array-like class holding references to // `mmdeploy_detection_t`, will be released automatically on destruction mmdeploy::Detector::Result dets = detector.Apply(img); // visualize utils::Visualize v; auto sess = v.get_session(img); int count = 0; for (const mmdeploy_detection_t& det : dets) { if (det.score > FLAGS_det_thr) { // filter bboxes sess.add_det(det.bbox, det.label_id, det.score, det.mask, count++); } } if (!FLAGS_output.empty()) { cv::imwrite(FLAGS_output, sess.get()); } return 0; }