TensorRT | PPLNN | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Model | Dataset | Input | fp32 | fp16 | in8 | fp16 | model config file | ||||
latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | ||||
ResNet | ImageNet | 1x3x224x224 | 2.97 | 336.90 | 1.26 | 791.89 | 1.21 | 829.66 | 1.30 | 768.28 | $MMCLS_DIR/configs/resnet/resnet50_b32x8_imagenet.py |
ResNeXt | ImageNet | 1x3x224x224 | 4.31 | 231.93 | 1.42 | 703.42 | 1.37 | 727.42 | 1.36 | 737.67 | $MMCLS_DIR/configs/resnext/resnext50_32x4d_b32x8_imagenet.py |
SE-ResNet | ImageNet | 1x3x224x224 | 3.41 | 293.64 | 1.66 | 600.73 | 1.51 | 662.90 | 1.91 | 524.07 | $MMCLS_DIR/configs/seresnet/seresnet50_b32x8_imagenet.py |
ShuffleNetV2 | ImageNet | 1x3x224x224 | 1.37 | 727.94 | 1.19 | 841.36 | 1.13 | 883.47 | 4.69 | 213.33 | $MMCLS_DIR/configs/shufflenet_v2/shufflenet_v2_1x_b64x16_linearlr_bn_nowd_imagenet.py |
TensorRT | PPLNN | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Model | Input | fp32 | fp16 | in8 | fp16 | model config file | ||||
latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | |||
ESRGAN | 1x3x32x32 | 12.64 | 79.14 | 12.42 | 80.50 | 12.45 | 80.35 | 7.67 | 130.39 | $MMEDIT_DIR/configs/restorers/esrgan/esrgan_psnr_x4c64b23g32_g1_1000k_div2k.py |
SRCNN | 1x3x32x32 | 0.70 | 1436.47 | 0.35 | 2836.62 | 0.26 | 3850.45 | 0.56 | 1775.11 | $MMEDIT_DIR/configs/restorers/srcnn/srcnn_x4k915_g1_1000k_div2k.py |
TensorRT | PPLNN | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Model | Dataset | Input | fp32 | fp16 | in8 | fp16 | model config file | ||||
latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | ||||
FCN | Cityscapes | 1x3x512x1024 | 128.42 | 7.79 | 23.97 | 41.72 | 18.13 | 55.15 | 27.00 | 37.04 | $MMSEG_DIR/configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py |
PSPNet | Cityscapes | 1x3x512x1024 | 119.77 | 8.35 | 24.10 | 41.49 | 16.33 | 61.23 | 27.26 | 36.69 | $MMSEG_DIR/configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py |
DeepLabV3 | Cityscapes | 1x3x512x1024 | 226.75 | 4.41 | 31.80 | 31.45 | 19.85 | 50.38 | 36.01 | 27.77 | $MMSEG_DIR/configs/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes.py |
DeepLabV3+ | Cityscapes | 1x3x512x1024 | 151.25 | 6.61 | 47.03 | 21.26 | 50.38 | 26.67 | 34.80 | 28.74 | $MMSEG_DIR/configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py |
TensorRT | PPLNN | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Model | Dataset | Input | fp32 | fp16 | in8 | fp16 | model config file | ||||
latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | ||||
YOLOv3 | COCO | 1x3x800x1344 | 94.08 | 10.63 | 24.90 | 40.17 | 24.87 | 40.21 | 47.64 | 20.99 | $MMDET_DIR/configs/yolo/yolov3_d53_320_273e_coco.py |
SSD-Lite | COCO | 1x3x800x1344 | 14.91 | 67.06 | 8.92 | 112.13 | 8.65 | 115.63 | 30.13 | 33.19 | $MMDET_DIR/configs/ssd/ssdlite_mobilenetv2_scratch_600e_coco.py |
RetinaNet | COCO | 1x3x800x1344 | 97.09 | 10.30 | 25.79 | 38.78 | 16.88 | 59.23 | 38.34 | 26.08 | $MMDET_DIR/configs/retinanet/retinanet_r50_fpn_1x_coco.py |
FCOS | COCO | 1x3x800x1344 | 84.06 | 11.90 | 23.15 | 43.20 | 17.68 | 56.57 | - | - | $MMDET_DIR/configs/fcos/fcos_r50_caffe_fpn_gn-head_1x_coco.py |
FSAF | COCO | 1x3x800x1344 | 82.96 | 12.05 | 21.02 | 47.58 | 13.50 | 74.08 | 30.41 | 32.89 | $MMDET_DIR/configs/fsaf/fsaf_r50_fpn_1x_coco.py |
Faster-RCNN | COCO | 1x3x800x1344 | 88.08 | 11.35 | 26.52 | 37.70 | 19.14 | 52.23 | 65.40 | 15.29 | $MMDET_DIR/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py |
Mask-RCNN | COCO | 1x3x800x1344 | 320.86 | 3.12 | 241.32 | 4.14 | - | - | 86.80 | 11.52 | $MMDET_DIR/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py |
TensorRT | PPLNN | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Model | Dataset | Input | fp32 | fp16 | in8 | fp16 | model config file | ||||
FPS | latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | |||||
DBNet | ICDAR2015 | 1x3x640x640 | 10.70 | 93.43 | 5.62 | 177.78 | 5.00 | 199.85 | 34.84 | 28.70 | $MMOCR_DIR/configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py |
CRNN | IIIT5K | 1x1x32x32 | 1.93 | 518.28 | 1.40 | 713.88 | 1.36 | 736.79 | - | - | $MMOCR_DIR/configs/textrecog/crnn/crnn_academic_dataset.py |
MMClassification | PyTorch | ONNX Runtime | TensorRT | PPLNN | |||||
---|---|---|---|---|---|---|---|---|---|
Model | Task | Metrics | fp32 | fp32 | fp32 | fp16 | int8 | fp16 | model config file |
ResNet-18 | Classification | top-1 | 69.90 | 69.88 | 69.88 | 69.86 | 69.86 | 69.86 | $MMCLS_DIR/configs/resnet/resnet18_b32x8_imagenet.py |
top-5 | 89.43 | 89.34 | 89.34 | 89.33 | 89.38 | 89.34 | |||
ResNeXt-50 | Classification | top-1 | 77.90 | 77.90 | 77.90 | - | 77.78 | 77.89 | $MMCLS_DIR/configs/resnext/resnext50_32x4d_b32x8_imagenet.py |
top-5 | 93.66 | 93.66 | 93.66 | - | 93.64 | 93.65 | |||
SE-ResNet-50 | Classification | top-1 | 77.74 | 77.74 | 77.74 | 77.75 | 77.63 | 77.73 | $MMCLS_DIR/configs/resnext/resnext50_32x4d_b32x8_imagenet.py |
top-5 | 93.84 | 93.84 | 93.84 | 93.83 | 93.72 | 93.84 | |||
ShuffleNetV1 1.0x | Classification | top-1 | 68.13 | 68.13 | 68.13 | 68.13 | 67.71 | 68.11 | $MMCLS_DIR/configs/shufflenet_v1/shufflenet_v1_1x_b64x16_linearlr_bn_nowd_imagenet.py |
top-5 | 87.81 | 87.81 | 87.81 | 87.81 | 87.58 | 87.80 | |||
ShuffleNetV2 1.0x | Classification | top-1 | 69.55 | 69.55 | 69.55 | 69.54 | 69.10 | 69.54 | $MMCLS_DIR/configs/shufflenet_v2/shufflenet_v2_1x_b64x16_linearlr_bn_nowd_imagenet.py |
top-5 | 88.92 | 88.92 | 88.92 | 88.91 | 88.58 | 88.92 | |||
MobileNet V2 | Classification | top-1 | 71.86 | 71.86 | 71.86 | 71.87 | 70.91 | 71.84 | $MMCLS_DIR/configs/mobilenet_v2/mobilenet_v2_b32x8_imagenet.py |
top-5 | 90.42 | 90.42 | 90.42 | 90.40 | 89.85 | 90.41 |
MMEditing | PyTorch | ONNX Runtime | TensorRT | PPLNN | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Model | Task | Dataset | Metrics | fp32 | fp32 | fp32 | fp16 | int8 | fp16 | model config file |
SRCNN | Super Resolution | Set5 | PSNR | 28.4316 | 28.4323 | 28.4323 | 28.4286 | 28.1995 | 28.4311 | $MMEDIT_DIR/configs/restorers/srcnn/srcnn_x4k915_g1_1000k_div2k.py |
SSIM | 0.8099 | 0.8097 | 0.8097 | 0.8096 | 0.7934 | 0.8096 | ||||
ESRGAN | Super Resolution | Set5 | PSNR | 28.2700 | 28.2592 | 28.2592 | - | - | 28.2624 | $MMEDIT_DIR/configs/restorers/esrgan/esrgan_x4c64b23g32_g1_400k_div2k.py |
SSIM | 0.7778 | 0.7764 | 0.7774 | - | - | 0.7765 | ||||
ESRGAN-PSNR | Super Resolution | Set5 | PSNR | 30.6428 | 30.6444 | 30.6430 | - | - | 27.0426 | $MMEDIT_DIR/configs/restorers/esrgan/esrgan_psnr_x4c64b23g32_g1_1000k_div2k.py |
SSIM | 0.8559 | 0.8558 | 0.8558 | - | - | 0.8557 | ||||
SRGAN | Super Resolution | Set5 | PSNR | 27.9499 | 27.9408 | 27.9408 | - | - | 27.9388 | $MMEDIT_DIR/configs/restorers/srresnet_srgan/srgan_x4c64b16_g1_1000k_div2k.pyy |
SSIM | 0.7846 | 0.7839 | 0.7839 | - | - | 0.7839 | ||||
SRResNet | Super Resolution | Set5 | PSNR | 30.2252 | 30.2300 | 30.2300 | - | - | 30.2294 | $MMEDIT_DIR/configs/restorers/srresnet_srgan/msrresnet_x4c64b16_g1_1000k_div2k.py |
SSIM | 0.8491 | 0.8488 | 0.8488 | - | - | 0.8488 | ||||
Real-ESRNet | Super Resolution | Set5 | PSNR | 28.0297 | 27.7016 | 27.7016 | - | - | 27.7049 | $MMEDIT_DIR/configs/restorers/real_esrgan/realesrnet_c64b23g32_12x4_lr2e-4_1000k_df2k_ost.py |
SSIM | 0.8236 | 0.8122 | 0.8122 | - | - | 0.8123 | ||||
EDSR | Super Resolution | Set5 | PSNR | 30.2223 | 30.2214 | 30.2214 | 30.2211 | 30.1383 | - | $MMEDIT_DIR/configs/restorers/edsr/edsr_x4c64b16_g1_300k_div2k.py |
SSIM | 0.8500 | 0.8497 | 0.8497 | 0.8497 | 0.8469 | - |
MMOCR | Pytorch | ONNXRuntime | TensorRT | PPLNN | OpenVINO | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Model | Task | Dataset | Metrics | fp32 | fp32 | fp32 | fp16 | int8 | fp16 | fp32 | model config file |
DBNet* | TextDetection | ICDAR2015 | recall | 0.7310 | 0.7304 | 0.7198 | 0.7179 | 0.7111 | 0.7304 | 0.7309 | $MMOCR_DIR/configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py |
precision | 0.8714 | 0.8718 | 0.8677 | 0.8674 | 0.8688 | 0.8718 | 0.8714 | ||||
hmean | 0.7950 | 0.7949 | 0.7868 | 0.7856 | 0.7821 | 0.7949 | 0.7950 | ||||
CRNN | TextRecognition | IIIT5K | acc | 0.8067 | 0.8067 | 0.8067 | 0.8063 | 0.8067 | 0.8067 | - | $MMOCR_DIR/configs/textrecog/crnn/crnn_academic_dataset.py |
SAR | TextRecognition | IIIT5K | acc | 0.9517 | 0.9287 | - | - | - | - | - | $MMOCR_DIR/configs/textrecog/sar/sar_r31_parallel_decoder_academic.py |
MMSeg | Pytorch | ONNXRuntime | TensorRT | PPLNN | |||||
---|---|---|---|---|---|---|---|---|---|
Model | Dataset | Metrics | fp32 | fp32 | fp32 | fp16 | int8 | fp16 | model config file |
FCN | Cityscapes | mIoU | 72.25 | - | 72.36 | 72.35 | 74.19 | 72.35 | $MMSEG_DIR/configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py |
PSPNet | Cityscapes | mIoU | 78.55 | - | 78.26 | 78.24 | 77.97 | 78.09 | $MMSEG_DIR/configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py |
deeplabv3 | Cityscapes | mIoU | 79.09 | - | 79.12 | 79.12 | 78.96 | 79.12 | $MMSEG_DIR/configs/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes.py | deeplabv3+ | Cityscapes | mIoU | 79.61 | - | 79.6 | 79.6 | 79.43 | 79.6 | $MMSEG_DIR/configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes.py | Fast-SCNN | Cityscapes | mIoU | 70.96 | - | 70.93 | 70.92 | 66.0 | 70.92 | $MMSEG_DIR/configs/fastscnn/fast_scnn_lr0.12_8x4_160k_cityscapes.py |