# Copyright (c) OpenMMLab. All rights reserved. import os from tempfile import NamedTemporaryFile, TemporaryDirectory import mmcv import numpy as np import pytest import torch from torch.utils.data import DataLoader import mmdeploy.backend.onnxruntime as ort_apis from mmdeploy.apis import build_task_processor from mmdeploy.utils import load_config from mmdeploy.utils.test import DummyModel, SwitchBackendWrapper model_cfg_path = 'tests/test_codebase/test_mmocr/data/crnn.py' model_cfg = load_config(model_cfg_path)[0] deploy_cfg = mmcv.Config( dict( backend_config=dict(type='onnxruntime'), codebase_config=dict(type='mmocr', task='TextRecognition'), onnx_config=dict( type='onnx', export_params=True, keep_initializers_as_inputs=False, opset_version=11, input_shape=None, input_names=['input'], output_names=['output']))) onnx_file = NamedTemporaryFile(suffix='.onnx').name task_processor = build_task_processor(model_cfg, deploy_cfg, 'cpu') img_shape = (32, 32) img = np.random.rand(*img_shape, 3).astype(np.uint8) def test_init_pytorch_model(): from mmocr.models.textrecog.recognizer import BaseRecognizer model = task_processor.init_pytorch_model(None) assert isinstance(model, BaseRecognizer) @pytest.fixture def backend_model(): from mmdeploy.backend.onnxruntime import ORTWrapper ort_apis.__dict__.update({'ORTWrapper': ORTWrapper}) wrapper = SwitchBackendWrapper(ORTWrapper) wrapper.set(outputs={ 'output': torch.rand(1, 9, 37), }) yield task_processor.init_backend_model(['']) wrapper.recover() def test_init_backend_model(backend_model): assert isinstance(backend_model, torch.nn.Module) def test_create_input(): inputs = task_processor.create_input(img, input_shape=img_shape) assert isinstance(inputs, tuple) and len(inputs) == 2 def test_run_inference(backend_model): input_dict, _ = task_processor.create_input(img, input_shape=img_shape) results = task_processor.run_inference(backend_model, input_dict) assert results is not None def test_visualize(backend_model): input_dict, _ = task_processor.create_input(img, input_shape=img_shape) results = task_processor.run_inference(backend_model, input_dict) with TemporaryDirectory() as dir: filename = dir + 'tmp.jpg' task_processor.visualize(backend_model, img, results[0], filename, '') assert os.path.exists(filename) def test_get_tensort_from_input(): input_data = {'img': [torch.ones(3, 4, 5)]} inputs = task_processor.get_tensor_from_input(input_data) assert torch.equal(inputs, torch.ones(3, 4, 5)) def test_get_partition_cfg(): try: _ = task_processor.get_partition_cfg(partition_type='') except NotImplementedError: pass def test_build_dataset_and_dataloader(): from torch.utils.data import Dataset, DataLoader dataset = task_processor.build_dataset( dataset_cfg=model_cfg, dataset_type='test') assert isinstance(dataset, Dataset), 'Failed to build dataset' dataloader = task_processor.build_dataloader(dataset, 1, 1) assert isinstance(dataloader, DataLoader), 'Failed to build dataloader' def test_single_gpu_test_and_evaluate(): from mmcv.parallel import MMDataParallel # Prepare dataloader dataloader = DataLoader([]) # Prepare dummy model model = DummyModel(outputs=[torch.rand([1, 1, *img_shape])]) model = MMDataParallel(model, device_ids=[0]) assert model is not None # Run test outputs = task_processor.single_gpu_test(model, dataloader) assert outputs is not None task_processor.evaluate_outputs(model_cfg, outputs, [])