# Copyright (c) OpenMMLab. All rights reserved. import os from tempfile import NamedTemporaryFile, TemporaryDirectory import mmcv import pytest import torch from torch.utils.data import DataLoader from torch.utils.data.dataset import Dataset import mmdeploy.backend.onnxruntime as ort_apis from mmdeploy.apis import build_task_processor from mmdeploy.codebase import import_codebase from mmdeploy.utils import Codebase, load_config from mmdeploy.utils.test import DummyModel, SwitchBackendWrapper try: import_codebase(Codebase.MMDET3D) except ImportError: pytest.skip( f'{Codebase.MMDET3D} is not installed.', allow_module_level=True) model_cfg_path = 'tests/test_codebase/test_mmdet3d/data/model_cfg.py' pcd_path = 'tests/test_codebase/test_mmdet3d/data/kitti/kitti_000008.bin' model_cfg = load_config(model_cfg_path)[0] deploy_cfg = mmcv.Config( dict( backend_config=dict(type='onnxruntime'), codebase_config=dict(type='mmdet3d', task='VoxelDetection'), onnx_config=dict( type='onnx', export_params=True, keep_initializers_as_inputs=False, opset_version=11, input_shape=None, input_names=['voxels', 'num_points', 'coors'], output_names=['scores', 'bbox_preds', 'dir_scores']))) onnx_file = NamedTemporaryFile(suffix='.onnx').name task_processor = build_task_processor(model_cfg, deploy_cfg, 'cpu') def test_build_pytorch_model(): from mmdet3d.models import Base3DDetector model = task_processor.build_pytorch_model(None) assert isinstance(model, Base3DDetector) @pytest.fixture def backend_model(): from mmdeploy.backend.onnxruntime import ORTWrapper ort_apis.__dict__.update({'ORTWrapper': ORTWrapper}) wrapper = SwitchBackendWrapper(ORTWrapper) wrapper.set( outputs={ 'scores': torch.rand(1, 18, 32, 32), 'bbox_preds': torch.rand(1, 42, 32, 32), 'dir_scores': torch.rand(1, 12, 32, 32) }) yield task_processor.build_backend_model(['']) wrapper.recover() def test_build_backend_model(backend_model): from mmdeploy.codebase.mmdet3d.deploy.voxel_detection_model import \ VoxelDetectionModel assert isinstance(backend_model, VoxelDetectionModel) @pytest.mark.parametrize('device', ['cpu', 'cuda:0']) def test_create_input(device): if device == 'cuda:0' and not torch.cuda.is_available(): pytest.skip('cuda is not available') original_device = task_processor.device task_processor.device = device inputs = task_processor.create_input(pcd_path) assert len(inputs) == 2 task_processor.device = original_device @pytest.mark.skipif( reason='Only support GPU test', condition=not torch.cuda.is_available()) def test_run_inference(backend_model): task_processor.device = 'cuda:0' torch_model = task_processor.build_pytorch_model(None) input_dict, _ = task_processor.create_input(pcd_path) torch_results = task_processor.run_inference(torch_model, input_dict) backend_results = task_processor.run_inference(backend_model, input_dict) assert torch_results is not None assert backend_results is not None assert len(torch_results[0]) == len(backend_results[0]) task_processor.device = 'cpu' @pytest.mark.skipif( reason='Only support GPU test', condition=not torch.cuda.is_available()) def test_visualize(): task_processor.device = 'cuda:0' input_dict, _ = task_processor.create_input(pcd_path) torch_model = task_processor.build_pytorch_model(None) results = task_processor.run_inference(torch_model, input_dict) with TemporaryDirectory() as dir: filename = dir + 'tmp.bin' task_processor.visualize(torch_model, pcd_path, results[0], filename, 'test', False) assert os.path.exists(filename) task_processor.device = 'cpu' def test_build_dataset_and_dataloader(): dataset = task_processor.build_dataset( dataset_cfg=model_cfg, dataset_type='test') assert isinstance(dataset, Dataset), 'Failed to build dataset' dataloader = task_processor.build_dataloader(dataset, 1, 1) assert isinstance(dataloader, DataLoader), 'Failed to build dataloader' @pytest.mark.skipif( reason='Only support GPU test', condition=not torch.cuda.is_available()) def test_single_gpu_test_and_evaluate(): from mmcv.parallel import MMDataParallel task_processor.device = 'cuda:0' class DummyDataset(Dataset): def __getitem__(self, index): return 0 def __len__(self): return 0 def evaluate(self, *args, **kwargs): return 0 def format_results(self, *args, **kwargs): return 0 dataset = DummyDataset() # Prepare dataloader dataloader = DataLoader(dataset) # Prepare dummy model model = DummyModel(outputs=[torch.rand([1, 10, 5]), torch.rand([1, 10])]) model = MMDataParallel(model, device_ids=[0]) # Run test outputs = task_processor.single_gpu_test(model, dataloader) assert isinstance(outputs, list) output_file = NamedTemporaryFile(suffix='.pkl').name task_processor.evaluate_outputs( model_cfg, outputs, dataset, 'bbox', out=output_file, format_only=True) task_processor.device = 'cpu'