// Copyright (c) OpenMMLab. All rights reserved. #include <opencv2/imgcodecs.hpp> #include <opencv2/imgproc.hpp> #include "core/device.h" #include "core/registry.h" #include "core/serialization.h" #include "core/tensor.h" #include "core/utils/device_utils.h" #include "core/utils/formatter.h" #include "core/value.h" #include "mmrotate.h" #include "opencv_utils.h" namespace mmdeploy::mmrotate { using std::vector; class ResizeRBBox : public MMRotate { public: explicit ResizeRBBox(const Value& cfg) : MMRotate(cfg) { if (cfg.contains("params")) { score_thr_ = cfg["params"].value("score_thr", 0.05f); } } Result<Value> operator()(const Value& prep_res, const Value& infer_res) { MMDEPLOY_DEBUG("prep_res: {}", prep_res); MMDEPLOY_DEBUG("infer_res: {}", infer_res); Device cpu_device{"cpu"}; OUTCOME_TRY(auto dets, MakeAvailableOnDevice(infer_res["dets"].get<Tensor>(), cpu_device, stream_)); OUTCOME_TRY(auto labels, MakeAvailableOnDevice(infer_res["labels"].get<Tensor>(), cpu_device, stream_)); OUTCOME_TRY(stream_.Wait()); if (!(dets.shape().size() == 3 && dets.shape(2) == 6 && dets.data_type() == DataType::kFLOAT)) { MMDEPLOY_ERROR("unsupported `dets` tensor, shape: {}, dtype: {}", dets.shape(), (int)dets.data_type()); return Status(eNotSupported); } if (labels.shape().size() != 2) { MMDEPLOY_ERROR("unsupported `labels`, tensor, shape: {}, dtype: {}", labels.shape(), (int)labels.data_type()); return Status(eNotSupported); } OUTCOME_TRY(auto result, DispatchGetBBoxes(prep_res["img_metas"], dets, labels)); return to_value(result); } Result<RotatedDetectorOutput> DispatchGetBBoxes(const Value& prep_res, const Tensor& dets, const Tensor& labels) { auto data_type = labels.data_type(); switch (data_type) { case DataType::kFLOAT: return GetRBBoxes<float>(prep_res, dets, labels); case DataType::kINT32: return GetRBBoxes<int32_t>(prep_res, dets, labels); case DataType::kINT64: return GetRBBoxes<int64_t>(prep_res, dets, labels); default: return Status(eNotSupported); } } template <typename T> Result<RotatedDetectorOutput> GetRBBoxes(const Value& prep_res, const Tensor& dets, const Tensor& labels) { RotatedDetectorOutput objs; auto* dets_ptr = dets.data<float>(); auto* labels_ptr = labels.data<T>(); vector<float> scale_factor; if (prep_res.contains("scale_factor")) { from_value(prep_res["scale_factor"], scale_factor); } else { scale_factor = {1.f, 1.f, 1.f, 1.f}; } int ori_width = prep_res["ori_shape"][2].get<int>(); int ori_height = prep_res["ori_shape"][1].get<int>(); auto bboxes_number = dets.shape()[1]; auto channels = dets.shape()[2]; for (auto i = 0; i < bboxes_number; ++i, dets_ptr += channels, ++labels_ptr) { float score = dets_ptr[channels - 1]; if (score <= score_thr_) { continue; } auto cx = dets_ptr[0] / scale_factor[0]; auto cy = dets_ptr[1] / scale_factor[1]; auto width = dets_ptr[2] / scale_factor[0]; auto height = dets_ptr[3] / scale_factor[1]; auto angle = dets_ptr[4]; RotatedDetectorOutput::Detection det{}; det.label_id = static_cast<int>(*labels_ptr); det.score = score; det.rbbox = {cx, cy, width, height, angle}; objs.detections.push_back(std::move(det)); } return objs; } private: float score_thr_; }; REGISTER_CODEBASE_COMPONENT(MMRotate, ResizeRBBox); } // namespace mmdeploy::mmrotate