# 量化测试结果 目前 mmdeploy 支持 ncnn 量化 ## ncnn 量化 ### 分类任务 |model|dataset|fp32 top-1 (%)|int8 top-1 (%)| |:-:|:-:|:-:|:-:| |[ResNet-18](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet18_8xb16_cifar10.py)|Cifar10|94.82|94.83| |[ResNeXt-32x4d-50](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext50-32x4d_8xb32_in1k.py)|ImageNet-1k|77.90|78.20*| |[MobileNet V2](https://github.com/open-mmlab/mmclassification/blob/master/configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py)|ImageNet-1k|71.86|71.43*| |[HRNet-W18*](https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w18_4xb32_in1k.py)|ImageNet-1k|76.75|76.25*| 备注: * 因为 imagenet-1k 数据量很大、ncnn 未正式发布 Vulkan int8 版本,考虑到 CPU 运行时间,仅用部分测试集(4000/50000) * 量化后精度会有差异,分类模型涨点 1% 以内是正常情况 ### OCR 检测任务 |model|dataset|fp32 hmean|int8 hmean| |:-:|:-:|:-:|:-:| |[PANet](https://github.com/open-mmlab/mmocr/blob/main/configs/textdet/panet/panet_r18_fpem_ffm_600e_icdar2015.py)|ICDAR2015|0.795|0.792 @thr=0.9| 备注:[mmocr](https://github.com/open-mmlab/mmocr) 使用 `shapely` 计算 IoU,实现方法会导致轻微的精度差异