// Copyright (c) OpenMMLab. All rights reserved. #include #include #include #include #include #include #include "segmentor.h" using namespace std; vector gen_palette(int num_classes) { std::mt19937 gen; std::uniform_int_distribution uniform_dist(0, 255); vector palette; palette.reserve(num_classes); for (auto i = 0; i < num_classes; ++i) { palette.emplace_back(uniform_dist(gen), uniform_dist(gen), uniform_dist(gen)); } return palette; } int main(int argc, char *argv[]) { if (argc != 4) { fprintf(stderr, "usage:\n image_segmentation device_name model_path image_path\n"); return 1; } auto device_name = argv[1]; auto model_path = argv[2]; auto image_path = argv[3]; cv::Mat img = cv::imread(image_path); if (!img.data) { fprintf(stderr, "failed to load image: %s\n", image_path); return 1; } mm_handle_t segmentor{}; int status{}; status = mmdeploy_segmentor_create_by_path(model_path, device_name, 0, &segmentor); if (status != MM_SUCCESS) { fprintf(stderr, "failed to create segmentor, code: %d\n", (int)status); return 1; } mm_mat_t mat{img.data, img.rows, img.cols, 3, MM_BGR, MM_INT8}; mm_segment_t *result{}; status = mmdeploy_segmentor_apply(segmentor, &mat, 1, &result); if (status != MM_SUCCESS) { fprintf(stderr, "failed to apply segmentor, code: %d\n", (int)status); return 1; } auto palette = gen_palette(result->classes + 1); cv::Mat color_mask = cv::Mat::zeros(result->height, result->width, CV_8UC3); int pos = 0; for (auto iter = color_mask.begin(); iter != color_mask.end(); ++iter) { *iter = palette[result->mask[pos++]]; } img = img * 0.5 + color_mask * 0.5; cv::imwrite("output_segmentation.png", img); mmdeploy_segmentor_release_result(result, 1); mmdeploy_segmentor_destroy(segmentor); return 0; }