_base_ = ['../_base_/base_static.py', '../../_base_/backends/rknn.py'] onnx_config = dict(input_shape=[320, 320]) codebase_config = dict(model_type='rknn') backend_config = dict(input_size_list=[[3, 320, 320]]) # # yolov3, yolox for rknn-toolkit and rknn-toolkit2 # partition_config = dict( # type='rknn', # the partition policy name # apply_marks=True, # should always be set to True # partition_cfg=[ # dict( # save_file='model.onnx', # name to save the partitioned onnx # start=['detector_forward:input'], # [mark_name:input, ...] # end=['yolo_head:input'], # [mark_name:output, ...] # output_names=[f'pred_maps.{i}' for i in range(3)]) # out names # ]) # # retinanet, ssd, fsaf for rknn-toolkit2 # partition_config = dict( # type='rknn', # the partition policy name # apply_marks=True, # partition_cfg=[ # dict( # save_file='model.onnx', # start='detector_forward:input', # end=['BaseDenseHead:output'], # output_names=[f'BaseDenseHead.cls.{i}' for i in range(5)] + # [f'BaseDenseHead.loc.{i}' for i in range(5)]) # ])