FROM nvcr.io/nvidia/tensorrt:22.04-py3 ARG CUDA=11.3 ARG PYTHON_VERSION=3.8 ARG TORCH_VERSION=1.10.0 ARG TORCHVISION_VERSION=0.11.0 ARG ONNXRUNTIME_VERSION=1.8.1 ARG MMCV_VERSION=1.5.3 ARG PPLCV_VERSION=0.7.0 ENV FORCE_CUDA="1" ENV DEBIAN_FRONTEND=noninteractive ### change the system source for installing libs ARG USE_SRC_INSIDE=false RUN if [ ${USE_SRC_INSIDE} == true ] ; \ then \ sed -i s/archive.ubuntu.com/mirrors.aliyun.com/g /etc/apt/sources.list ; \ sed -i s/security.ubuntu.com/mirrors.aliyun.com/g /etc/apt/sources.list ; \ echo "Use aliyun source for installing libs" ; \ else \ echo "Keep the download source unchanged" ; \ fi ### update apt and install libs RUN apt-get update &&\ apt-get install -y vim libsm6 libxext6 libxrender-dev libgl1-mesa-glx git wget libssl-dev libopencv-dev libspdlog-dev --no-install-recommends &&\ rm -rf /var/lib/apt/lists/* RUN curl -fsSL -v -o ~/miniconda.sh -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh && \ chmod +x ~/miniconda.sh && \ ~/miniconda.sh -b -p /opt/conda && \ rm ~/miniconda.sh && \ /opt/conda/bin/conda install -y python=${PYTHON_VERSION} conda-build pyyaml numpy ipython cython typing typing_extensions mkl mkl-include ninja && \ /opt/conda/bin/conda clean -ya ### pytorch RUN /opt/conda/bin/conda install pytorch==${TORCH_VERSION} torchvision==${TORCHVISION_VERSION} cudatoolkit=${CUDA} -c pytorch ENV PATH /opt/conda/bin:$PATH ### install mmcv-full RUN /opt/conda/bin/pip install mmcv-full==${MMCV_VERSION} -f https://download.openmmlab.com/mmcv/dist/cu${CUDA//./}/torch${TORCH_VERSION}/index.html WORKDIR /root/workspace ### get onnxruntime RUN wget https://github.com/microsoft/onnxruntime/releases/download/v${ONNXRUNTIME_VERSION}/onnxruntime-linux-x64-${ONNXRUNTIME_VERSION}.tgz \ && tar -zxvf onnxruntime-linux-x64-${ONNXRUNTIME_VERSION}.tgz &&\ pip install onnxruntime-gpu==${ONNXRUNTIME_VERSION} ### cp trt from pip to conda RUN cp -r /usr/local/lib/python${PYTHON_VERSION}/dist-packages/tensorrt* /opt/conda/lib/python${PYTHON_VERSION}/site-packages/ ### install mmdeploy ENV ONNXRUNTIME_DIR=/root/workspace/onnxruntime-linux-x64-${ONNXRUNTIME_VERSION} ENV TENSORRT_DIR=/workspace/tensorrt ARG VERSION RUN git clone https://github.com/open-mmlab/mmdeploy &&\ cd mmdeploy &&\ if [ -z ${VERSION} ] ; then echo "No MMDeploy version passed in, building on master" ; else git checkout tags/v${VERSION} -b tag_v${VERSION} ; fi &&\ git submodule update --init --recursive &&\ mkdir -p build &&\ cd build &&\ cmake -DMMDEPLOY_TARGET_BACKENDS="ort;trt" .. &&\ make -j$(nproc) &&\ cd .. &&\ pip install -e . ### build sdk RUN git clone https://github.com/openppl-public/ppl.cv.git &&\ cd ppl.cv &&\ git checkout tags/v${PPLCV_VERSION} -b v${PPLCV_VERSION} &&\ ./build.sh cuda ENV BACKUP_LD_LIBRARY_PATH=$LD_LIBRARY_PATH ENV LD_LIBRARY_PATH=/usr/local/cuda/compat/lib.real/:$LD_LIBRARY_PATH RUN cd /root/workspace/mmdeploy &&\ rm -rf build/CM* build/cmake-install.cmake build/Makefile build/csrc &&\ mkdir -p build && cd build &&\ cmake .. \ -DMMDEPLOY_BUILD_SDK=ON \ -DMMDEPLOY_BUILD_EXAMPLES=ON \ -DCMAKE_CXX_COMPILER=g++ \ -Dpplcv_DIR=/root/workspace/ppl.cv/cuda-build/install/lib/cmake/ppl \ -DTENSORRT_DIR=${TENSORRT_DIR} \ -DONNXRUNTIME_DIR=${ONNXRUNTIME_DIR} \ -DMMDEPLOY_BUILD_SDK_PYTHON_API=ON \ -DMMDEPLOY_TARGET_DEVICES="cuda;cpu" \ -DMMDEPLOY_TARGET_BACKENDS="ort;trt" \ -DMMDEPLOY_CODEBASES=all &&\ make -j$(nproc) && make install &&\ export SPDLOG_LEVEL=warn &&\ if [ -z ${VERSION} ] ; then echo "Built MMDeploy master for GPU devices successfully!" ; else echo "Built MMDeploy version v${VERSION} for GPU devices successfully!" ; fi ENV LD_LIBRARY_PATH="/root/workspace/mmdeploy/build/lib:${BACKUP_LD_LIBRARY_PATH}"