# How to add test units for backend ops This tutorial introduces how to add unit test for backend ops. When you add a custom op under `backend_ops`, you need to add the corresponding test unit. Test units of ops are included in `tests/test_ops/test_ops.py`. ## Prerequisite - `Compile new ops`: After adding a new custom op, needs to recompile the relevant backend, referring to [build.md](../01-how-to-build/build_from_source.md). ## 1. Add the test program test_XXXX() You can put unit test for ops in `tests/test_ops/`. Usually, the following program template can be used for your custom op. ### example of ops unit test ```python @pytest.mark.parametrize('backend', [TEST_TENSORRT, TEST_ONNXRT]) # 1.1 backend test class @pytest.mark.parametrize('pool_h,pool_w,spatial_scale,sampling_ratio', # 1.2 set parameters of op [(2, 2, 1.0, 2), (4, 4, 2.0, 4)]) # [(# Examples of op test parameters),...] def test_roi_align(backend, pool_h, # set parameters of op pool_w, spatial_scale, sampling_ratio, input_list=None, save_dir=None): backend.check_env() if input_list is None: input = torch.rand(1, 1, 16, 16, dtype=torch.float32) # 1.3 op input data initialization single_roi = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32) else: input = torch.tensor(input_list[0], dtype=torch.float32) single_roi = torch.tensor(input_list[1], dtype=torch.float32) from mmcv.ops import roi_align def wrapped_function(torch_input, torch_rois): # 1.4 initialize op model to be tested return roi_align(torch_input, torch_rois, (pool_w, pool_h), spatial_scale, sampling_ratio, 'avg', True) wrapped_model = WrapFunction(wrapped_function).eval() with RewriterContext(cfg={}, backend=backend.backend_name, opset=11): # 1.5 call the backend test class interface backend.run_and_validate( wrapped_model, [input, single_roi], 'roi_align', input_names=['input', 'rois'], output_names=['roi_feat'], save_dir=save_dir) ``` ### 1.1 backend test class We provide some functions and classes for difference backends, such as `TestOnnxRTExporter`, `TestTensorRTExporter`, `TestNCNNExporter`. ### 1.2 set parameters of op Set some parameters of op, such as ’pool_h‘, ’pool_w‘, ’spatial_scale‘, ’sampling_ratio‘ in roi_align. You can set multiple parameters to test op. ### 1.3 op input data initialization Initialization required input data. ### 1.4 initialize op model to be tested The model containing custom op usually has two forms. - `torch model`: Torch model with custom operators. Python code related to op is required, refer to `roi_align` unit test. - `onnx model`: Onnx model with custom operators. Need to call onnx api to build, refer to `multi_level_roi_align` unit test. ### 1.5 call the backend test class interface Call the backend test class `run_and_validate` to run and verify the result output by the op on the backend. ```python def run_and_validate(self, model, input_list, model_name='tmp', tolerate_small_mismatch=False, do_constant_folding=True, dynamic_axes=None, output_names=None, input_names=None, expected_result=None, save_dir=None): ``` #### Parameter Description - `model`: Input model to be tested and it can be torch model or any other backend model. - `input_list`: List of test data, which is mapped to the order of input_names. - `model_name`: The name of the model. - `tolerate_small_mismatch`: Whether to allow small errors in the verification of results. - `do_constant_folding`: Whether to use constant light folding to optimize the model. - `dynamic_axes`: If you need to use dynamic dimensions, enter the dimension information. - `output_names`: The node name of the output node. - `input_names`: The node name of the input node. - `expected_result`: Expected ground truth values for verification. - `save_dir`: The folder used to save the output files. ## 2. Test Methods Use pytest to call the test function to test ops. ```bash pytest tests/test_ops/test_ops.py::test_XXXX ```