# Copyright (c) OpenMMLab. All rights reserved. import os import mmcv import pytest import torch from torch.utils.data import DataLoader from torch.utils.data.dataset import Dataset from mmdeploy.apis import build_task_processor from mmdeploy.utils import load_config from mmdeploy.utils.test import DummyModel, SwitchBackendWrapper @pytest.fixture(scope='module') def model_cfg_path(): return 'tests/test_codebase/test_mmdet3d/data/monodet_model_cfg.py' @pytest.fixture(scope='module') def img_path(): return 'tests/test_codebase/test_mmdet3d/data/nuscenes/' \ 'n015-2018-07-24-11-22-45+0800__CAM_BACK__1532402927637525.jpg' @pytest.fixture(scope='module') def model_cfg(model_cfg_path): return load_config(model_cfg_path)[0] @pytest.fixture(scope='module') def deploy_cfg(): return mmcv.Config( dict( backend_config=dict(type='onnxruntime'), codebase_config=dict( type='mmdet3d', task='MonocularDetection', ann_file='tests/test_codebase/test_mmdet3d/data' + '/nuscenes/n015-2018' + '-07-24-11-22-45+0800__CAM_BACK__1532402927637525_mono3d' + '.coco.json'), onnx_config=dict( type='onnx', export_params=True, keep_initializers_as_inputs=False, opset_version=11, input_shape=None, input_names=['img', 'cam2img', 'cam2img_inverse'], output_names=[ 'bboxes', 'scores', 'labels', 'dir_scores', 'attrs' ]))) @pytest.fixture(scope='module') def task_processor(model_cfg, deploy_cfg): return build_task_processor(model_cfg, deploy_cfg, 'cpu') num_classes = 10 num_attr = 5 num_dets = 20 @pytest.fixture(scope='module') def torch_model(task_processor): return task_processor.init_pytorch_model(None) def test_init_pytorch_model(torch_model): from mmdet3d.models import SingleStageMono3DDetector assert isinstance(torch_model, SingleStageMono3DDetector) @pytest.fixture(scope='module') def backend_model(task_processor): from mmdeploy.backend.onnxruntime import ORTWrapper with SwitchBackendWrapper(ORTWrapper) as wrapper: wrapper.set( outputs={ 'bboxes': torch.rand(1, num_dets, 9), 'scores': torch.rand(1, num_dets), 'labels': torch.randint(num_classes, (1, num_dets)), 'dir_scores': torch.randint(2, (1, num_dets)), 'attrs': torch.randint(num_attr, (1, num_dets)) }) yield task_processor.init_backend_model(['']) def test_init_backend_model(backend_model): from mmdeploy.codebase.mmdet3d.deploy.monocular_detection_model import \ MonocularDetectionModel assert isinstance(backend_model, MonocularDetectionModel) @pytest.fixture(scope='module') def model_inputs(task_processor, img_path): return task_processor.create_input(img_path) @pytest.mark.parametrize('device', ['cpu', 'cuda:0']) def test_create_input(device, task_processor, model_inputs): if device == 'cuda:0' and not torch.cuda.is_available(): pytest.skip('cuda is not available') original_device = task_processor.device task_processor.device = device inputs = model_inputs assert len(inputs) == 2 task_processor.device = original_device @pytest.mark.skipif( reason='Only support GPU test', condition=not torch.cuda.is_available()) def test_run_inference(backend_model, task_processor, torch_model, model_inputs): task_processor.device = 'cuda:0' input_dict, _ = model_inputs torch_results = task_processor.run_inference(torch_model, input_dict) backend_results = task_processor.run_inference(backend_model, input_dict) assert torch_results is not None assert backend_results is not None assert len(torch_results[0]) == len(backend_results[0]) task_processor.device = 'cpu' @pytest.mark.skipif( reason='Only support GPU test', condition=not torch.cuda.is_available()) def test_visualize(task_processor, torch_model, model_inputs, img_path, tmp_path): task_processor.device = 'cuda:0' input_dict, _ = model_inputs results = task_processor.run_inference(torch_model, input_dict) filename = str(tmp_path / 'tmp.bin') task_processor.visualize(torch_model, img_path, results[0], filename, 'test', False) assert os.path.exists(filename) task_processor.device = 'cpu' def test_build_dataset_and_dataloader(task_processor, model_cfg): dataset = task_processor.build_dataset( dataset_cfg=model_cfg, dataset_type='test') assert isinstance(dataset, Dataset), 'Failed to build dataset' dataloader = task_processor.build_dataloader(dataset, 1, 1) assert isinstance(dataloader, DataLoader), 'Failed to build dataloader' @pytest.mark.skipif( reason='Only support GPU test', condition=not torch.cuda.is_available()) def test_single_gpu_test_and_evaluate(task_processor, model_cfg, tmp_path): from mmcv.parallel import MMDataParallel task_processor.device = 'cuda:0' class DummyDataset(Dataset): def __getitem__(self, index): return 0 def __len__(self): return 0 def evaluate(self, *args, **kwargs): return 0 def format_results(self, *args, **kwargs): return 0 dataset = DummyDataset() # Prepare dataloader dataloader = DataLoader(dataset) # Prepare dummy model model = DummyModel(outputs=[torch.rand([1, 10, 5]), torch.rand([1, 10])]) model = MMDataParallel(model, device_ids=[0]) # Run test outputs = task_processor.single_gpu_test(model, dataloader) assert isinstance(outputs, list) output_file = str(tmp_path / 'tmp.pkl') task_processor.evaluate_outputs( model_cfg, outputs, dataset, 'bbox', out=output_file, format_only=True) task_processor.device = 'cpu'