# Copyright (c) OpenMMLab. All rights reserved. import os import mmcv import numpy as np import pytest import torch from mmdeploy.apis import build_task_processor from mmdeploy.utils import load_config from mmdeploy.utils.test import DummyModel, SwitchBackendWrapper model_cfg_path = 'tests/test_codebase/test_mmpose/data/model.py' @pytest.fixture(scope='module') def model_cfg(): return load_config(model_cfg_path)[0] @pytest.fixture(scope='module') def deploy_cfg(): return mmcv.Config( dict( backend_config=dict(type='onnxruntime'), codebase_config=dict(type='mmpose', task='PoseDetection'), onnx_config=dict( type='onnx', export_params=True, keep_initializers_as_inputs=False, opset_version=11, save_file='end2end.onnx', input_names=['input'], output_names=['output'], input_shape=None))) @pytest.fixture(scope='module') def task_processor(model_cfg, deploy_cfg): return build_task_processor(model_cfg, deploy_cfg, 'cpu') img_shape = (192, 256) heatmap_shape = (48, 64) # mmpose.apis.inference.LoadImage uses opencv, needs float32 in # cv2.cvtColor. @pytest.fixture(scope='module') def img(): return np.random.rand(*img_shape, 3).astype(np.float32) @pytest.fixture(scope='module') def model_inputs(task_processor, img): return task_processor.create_input(img, input_shape=img_shape) def test_create_input(model_inputs): assert isinstance(model_inputs, tuple) and len(model_inputs) == 2 def test_init_pytorch_model(task_processor): from mmpose.models.detectors.base import BasePose model = task_processor.init_pytorch_model(None) assert isinstance(model, BasePose) @pytest.fixture(scope='module') def backend_model(task_processor, model_cfg): from mmdeploy.backend.onnxruntime import ORTWrapper with SwitchBackendWrapper(ORTWrapper) as wrapper: num_output_channels = model_cfg['data_cfg']['num_output_channels'] wrapper.set( outputs={ 'output': torch.rand(1, num_output_channels, *heatmap_shape), }) yield task_processor.init_backend_model(['']) def test_init_backend_model(backend_model): assert isinstance(backend_model, torch.nn.Module) def test_run_inference(backend_model, task_processor, model_inputs): input_dict, _ = model_inputs results = task_processor.run_inference(backend_model, input_dict) assert results is not None def test_visualize(backend_model, task_processor, model_inputs, img, tmp_path): input_dict, _ = model_inputs results = task_processor.run_inference(backend_model, input_dict) filename = str(tmp_path / 'tmp.jpg') task_processor.visualize(backend_model, img, results[0], filename, '') assert os.path.exists(filename) def test_get_tensor_from_input(task_processor): input_data = {'img': torch.ones(3, 4, 5)} inputs = task_processor.get_tensor_from_input(input_data) assert torch.equal(inputs, torch.ones(3, 4, 5)) def test_get_partition_cfg(task_processor): with pytest.raises(NotImplementedError): _ = task_processor.get_partition_cfg(partition_type='') def test_get_model_name(task_processor): model_name = task_processor.get_model_name() assert isinstance(model_name, str) and model_name is not None def test_build_dataset_and_dataloader(task_processor, model_cfg): from torch.utils.data import DataLoader, Dataset dataset = task_processor.build_dataset( dataset_cfg=model_cfg, dataset_type='test') assert isinstance(dataset, Dataset), 'Failed to build dataset' dataloader = task_processor.build_dataloader(dataset, 1, 1) assert isinstance(dataloader, DataLoader), 'Failed to build dataloader' def test_single_gpu_test_and_evaluate(task_processor, model_cfg): from mmcv.parallel import MMDataParallel dataset = task_processor.build_dataset( dataset_cfg=model_cfg, dataset_type='test') dataloader = task_processor.build_dataloader(dataset, 1, 1) # Prepare dummy model model = DummyModel(outputs=[torch.rand([1, 1000])]) model = MMDataParallel(model, device_ids=[0]) assert model is not None # Run test outputs = task_processor.single_gpu_test(model, dataloader) assert outputs is not None task_processor.evaluate_outputs(model_cfg, outputs, dataset)