# Copyright (c) OpenMMLab. All rights reserved. import copy import os from typing import Any import mmcv import numpy as np import pytest import torch from torch.utils.data import DataLoader from mmdeploy.apis import build_task_processor from mmdeploy.utils import load_config from mmdeploy.utils.test import DummyModel, SwitchBackendWrapper model_cfg_path = 'tests/test_codebase/test_mmseg/data/model.py' @pytest.fixture(scope='module') def model_cfg(): return load_config(model_cfg_path)[0] @pytest.fixture(scope='module') def deploy_cfg(): return mmcv.Config( dict( backend_config=dict(type='onnxruntime'), codebase_config=dict(type='mmseg', task='Segmentation'), onnx_config=dict( type='onnx', export_params=True, keep_initializers_as_inputs=False, opset_version=11, input_shape=None, input_names=['input'], output_names=['output']))) @pytest.fixture(scope='module') def task_processor(model_cfg, deploy_cfg): return build_task_processor(model_cfg, deploy_cfg, 'cpu') img_shape = (32, 32) @pytest.fixture(scope='module') def img(): return np.random.rand(*img_shape, 3) @pytest.mark.parametrize('from_mmrazor', [True, False, '123', 0]) def test_init_pytorch_model(from_mmrazor: Any, task_processor, deploy_cfg): from mmseg.models.segmentors.base import BaseSegmentor if from_mmrazor is False: _task_processor = task_processor else: _model_cfg_path = 'tests/test_codebase/test_mmseg/data/' \ 'mmrazor_model.py' _model_cfg = load_config(_model_cfg_path)[0] _model_cfg.algorithm.architecture.model.type = 'mmseg.EncoderDecoder' _model_cfg.algorithm.distiller.teacher.type = 'mmseg.EncoderDecoder' _deploy_cfg = copy.deepcopy(deploy_cfg) _deploy_cfg.codebase_config['from_mmrazor'] = from_mmrazor _task_processor = build_task_processor(_model_cfg, _deploy_cfg, 'cpu') if not isinstance(from_mmrazor, bool): with pytest.raises( TypeError, match='`from_mmrazor` attribute must be ' 'boolean type! ' f'but got: {from_mmrazor}'): _ = _task_processor.from_mmrazor return assert from_mmrazor == _task_processor.from_mmrazor if from_mmrazor: pytest.importorskip('mmrazor', reason='mmrazor is not installed.') model = _task_processor.init_pytorch_model(None) assert isinstance(model, BaseSegmentor) @pytest.fixture(scope='module') def backend_model(task_processor): from mmdeploy.backend.onnxruntime import ORTWrapper with SwitchBackendWrapper(ORTWrapper) as wrapper: wrapper.set(outputs={ 'output': torch.rand(1, 1, *img_shape), }) yield task_processor.init_backend_model(['']) def test_init_backend_model(backend_model): assert isinstance(backend_model, torch.nn.Module) @pytest.fixture(scope='module') def model_inputs(task_processor, img): return task_processor.create_input(img, input_shape=img_shape) def test_create_input(model_inputs): assert isinstance(model_inputs, tuple) and len(model_inputs) == 2 def test_run_inference(backend_model, task_processor, img): input_dict, _ = task_processor.create_input(img, input_shape=img_shape) results = task_processor.run_inference(backend_model, input_dict) assert results is not None def test_visualize(backend_model, task_processor, model_inputs, img, tmp_path): input_dict, _ = model_inputs results = task_processor.run_inference(backend_model, input_dict) filename = str(tmp_path / 'tmp.jpg') task_processor.visualize(backend_model, img, results[0], filename, '') assert os.path.exists(filename) def test_get_tensort_from_input(task_processor): input_data = {'img': [torch.ones(3, 4, 5)]} inputs = task_processor.get_tensor_from_input(input_data) assert torch.equal(inputs, torch.ones(3, 4, 5)) def test_get_partition_cfg(task_processor): with pytest.raises(NotImplementedError): _ = task_processor.get_partition_cfg(partition_type='') def test_build_dataset_and_dataloader(task_processor, model_cfg): from torch.utils.data import DataLoader, Dataset dataset = task_processor.build_dataset( dataset_cfg=model_cfg, dataset_type='test') assert isinstance(dataset, Dataset), 'Failed to build dataset' dataloader = task_processor.build_dataloader(dataset, 1, 1) assert isinstance(dataloader, DataLoader), 'Failed to build dataloader' def test_single_gpu_test_and_evaluate(task_processor, model_cfg): from mmcv.parallel import MMDataParallel # Prepare dataloader dataloader = DataLoader([]) # Prepare dummy model model = DummyModel(outputs=[torch.rand([1, 1, *img_shape])]) model = MMDataParallel(model, device_ids=[0]) assert model is not None # Run test outputs = task_processor.single_gpu_test(model, dataloader) assert outputs is not None task_processor.evaluate_outputs(model_cfg, outputs, [])