// Copyright (c) OpenMMLab. All rights reserved. #include "gather.h" #include "../ncnn_ops_definer.h" #include "assert.h" namespace mmdeploy { using namespace ncnn; DEFINE_LAYER_CREATOR(Gather) DEFINE_NCNN_OPS(Gather, Gather) Gather::Gather() { one_blob_only = false; support_inplace = false; } int Gather::load_param(const ParamDict &pd) { axis = pd.get(0, 0); return 0; } // Gather only support 1-dim of indices, because the data and indices all has // implicit batch in ncnn, this will lead to wrong shape to match onnx result. // When indices dim equals to 1, after eliminating implicit batch, the indices // dim still be 1. So there is only 1 implicit batch in data, this will make // the shape match onnx result. int Gather::forward(const std::vector &bottom_blobs, std::vector &top_blobs, const Option &opt) const { const Mat &bottom_blob = bottom_blobs[0]; const Mat &indices = bottom_blobs[1]; int dims = bottom_blob.dims; int indices_dims = indices.dims; size_t elemsize = bottom_blob.elemsize; int positive_axis = axis < 0 ? dims + axis : axis; Mat &top_blob = top_blobs[0]; assert(indices.dims == 1); const float *indices_ptr = indices; if (dims == 1 && indices_dims == 1) // positive_axis == 0 { int w = indices.w; top_blob.create(w, elemsize, opt.blob_allocator); if (top_blob.empty()) { return -100; } const float *ptr = bottom_blob; float *outptr = top_blob; for (int i = 0; i < w; i++) { float indice = indices_ptr[i]; outptr[i] = ptr[(int)(indice + 0.5)]; } return 0; } if (dims == 2 && positive_axis == 0 && indices_dims == 1) { int w = bottom_blob.w; int h = bottom_blob.h; top_blob.create(w, indices.w, elemsize, opt.blob_allocator); // w -> w // h -> indices.w // h * w -> indices.w * w if (top_blob.empty()) { return -100; } const float *ptr = bottom_blob; float *outptr = top_blob; for (int i = 0; i < indices.w; i++) { const int selected = (int)(indices_ptr[i] + 0.5); memcpy(top_blob.row(i), bottom_blob.row(selected), w * elemsize); } return 0; } if (dims == 2 && positive_axis == 1 && indices_dims == 1) { int w = bottom_blob.w; int h = bottom_blob.h; top_blob.create(indices.w, h, elemsize, opt.blob_allocator); // w -> h // h -> indices.w // h * w -> indices.w * h if (top_blob.empty()) { return -100; } const float *ptr = bottom_blob; float *outptr = top_blob; for (int j = 0; j < h; j++) { for (int i = 0; i < indices.w; i++) { int selected = (int)(indices_ptr[i] + 0.5); outptr[j * indices.w + i] = ptr[j * w + selected]; } } return 0; } if (dims == 3 && positive_axis == 0 && indices_dims == 1) { int w = bottom_blob.w; int h = bottom_blob.h; int channels = bottom_blob.c; top_blob.create(w, h, indices.w, elemsize, opt.blob_allocator); if (top_blob.empty()) { return -100; } for (int i = 0; i < indices.w; i++) { int selected = (int)(indices_ptr[i] + 0.5); const unsigned char *ptr = bottom_blob.channel(selected); unsigned char *outptr = top_blob.channel(i); memcpy(outptr, ptr, w * h * elemsize); } return 0; } if (dims == 3 && positive_axis == 1 && indices_dims == 1) { int w = bottom_blob.w; int h = bottom_blob.h; int channels = bottom_blob.c; top_blob.create(w, indices.w, channels, elemsize, opt.blob_allocator); #pragma omp parallel for num_threads(opt.num_threads) // use parallel programming for (int i = 0; i < channels; i++) { float *outptr = top_blob.channel(i); const float *ptr = bottom_blob.channel(i); for (int j = 0; j < indices.w; j++) { int selected = (int)(indices_ptr[j] + 0.5); for (int k = 0; k < w; k++) { outptr[j * w + k] = ptr[selected * w + k]; } } } return 0; } if (dims == 3 && positive_axis == 2 && indices_dims == 1) { int w = bottom_blob.w; int h = bottom_blob.h; int channels = bottom_blob.c; top_blob.create(indices.w, h, channels, elemsize, opt.blob_allocator); #pragma omp parallel for num_threads(opt.num_threads) // use parallel programming for (int i = 0; i < channels; i++) { float *outptr = top_blob.channel(i); const float *ptr = bottom_blob.channel(i); for (int j = 0; j < h; j++) { for (int k = 0; k < indices.w; k++) { int selected = (int)(indices_ptr[k] + 0.5); outptr[j * indices.w + k] = ptr[j * w + selected]; } } } return 0; } return 0; } } // namespace mmdeploy